PELASFX

Bulk Data Entry Used to define the stiffness and stress coefficient of a scalar elastic element (spring) by means of the CELAS1 or CELAS3 entry.

This property is not affected by translational and rotational stiffness limits specified using PARAM,ELASSTIF.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PELASFX PID K GE S PID K GE S

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PELASFX 7 4.29 7.92 27 2.17

Definitions

Field Contents SI Unit Example
PID Unique scalar elastic property identification number.

No default (Integer > 0)

K Elastic property value.

No default (Real)

GE Damping coefficient. To obtain the damping coefficient GE, multiply the critical damping ratio, C / C 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaac+ cacaWGdbWaaSbaaSqaaiaaicdaaeqaaaaa@391F@ , by 2.

GE is ignored in transient analysis, if PARAM, W4 is not specified.

Default = 0.0 (Real)

S Stress coefficient.

Default = 0.0 (Real)

Comments

  1. Be careful using negative spring values.
  2. One or two elastic spring properties may be defined on a single entry.
  3. The element force of a spring is calculated from the equation:
    f = k * ( u 1 u 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2 da9iaadUgacaGGQaWaaeWaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqa aOGaeyOeI0IaamyDamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawM caaaaa@3FD2@
    Where,
    k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CE@
    Stiffness coefficient for the scalar element.
    u 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aaciGG1bGaaGymaaaa@3A8D@
    Displacement of the first degree-of-freedom listed on the CELAS1 and CELAS3 entries.

    Element stresses are calculated from the equation:

    s = S * f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2 da9iaadofacaGGQaGaamOzaaaa@3A65@
    Where, S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CE@ is the stress coefficient as defined above.

  4. This card is represented as a property in HyperMesh.