CELAS4F

Bulk Data Entry Defines a scalar spring element that is connected only to scalar points without reference to a property entry. The corresponding properties on this entry are not affected by translational and rotational stiffness limits specified using PARAM,ELASSTIF.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CELAS4F EID K S1 S2 GE S

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CELAS4F 42 6.2-3 2

Definitions

Field Contents SI Unit Example
EID Unique element identification number.

No default (Integer > 0)

K Stiffness of the scalar spring.

No default (Real)

S1, S2 Scalar point identification numbers.

S1 or S2, but not both, may be blank or zero indicating a constrained coordinate.

Default = 0 (Integer ≥ 0; S1S2)

GE Damping coefficient.

GE is ignored in transient analysis, if PARAM, W4 is not specified.

Default = 0.0 (Real)

S Stress coefficient.

Default = 0.0 (Real)

Comments

  1. This single entry completely defines the element since no material or geometric properties are required.
  2. Only one scalar spring element may be defined on a single entry.
  3. A scalar point specified on this entry does not need to be defined on a SPOINT Bulk Data Entry.
  4. The element force of a spring is calculated from the equation:
    F = k * (u1 - u2)
    Where,
    k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CE@
    Stiffness coefficient for the scalar element.
    u 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyDaiaaig daaaa@37A9@
    Displacement of the first degree-of-freedom listed on the CELAS4 entry

    Element stresses are calculated from the equation:

    s = S * f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caiabg2 da9iaadofacaGGQaGaamOzaaaa@3A65@
    Where, S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CE@ is the stress coefficient as defined above.

  5. This card is represented as a spring or mass element in HyperMesh.