PACPML

Bulk Data Entry Defines the properties of acoustic Adaptive Perfectly Matched Layer (APML) elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PACPML PID MID MODINT
ESBYL TBYL MESHG MESHM   DBNAME
EPS XP YP ZP
MFID NBND BNDTYP ADAPF

Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PACPML 7 1 4

Definitions

Field Contents SI Unit Example
PID Unique property identification number.

No default (Integer > 0)

MID Material identification number of a MAT10 material entry.

No default (Integer > 0)

MODINT Modified integration element formulation option. 2
0 (Default)
Regular element formulation is used.
1
Modified element formulation is used.
ESBYL Number of adaptively meshed elements to be present in the minimum wavelength of each frequency band.

Default = 4.0 (Real)

TBYL Ratio of the thickness of each PML layer to the maximum wavelength of the frequency band.

Default = 1.0 (Real)

MESHG Maximum Ratio between element size of a neighboring element and the size of a particular element.

This option allows you to control neighboring element sizes to prevent poor meshes for PML computations.

Default = 2.0 (Real)

MESHM Meshing method to be chosen for adaptive meshing.
TET(Default)
Tetrahedral elements
blank
DBNAME Database file name which is used to save meshes generated during the APML process.

Default = pml_DB (Character)

EPS Regularization parameter for distance field computation.

Default = 0.001 (Real)

XP, YP, ZP Coordinates of the pole of the APML acoustic elements (defined in the basic coordinate system).

Default = Center of Gravity of PML layer (Real)

MFID Identification number of a MESHF Bulk Data Entry, which manually identifies the frequency bands for adaptive mesh generation.

Default = Blank (Integer)

NBND Number of frequency bands in the range of frequencies (from the minimum to maximum frequency in the range).

Default = Blank (Integer)

BNDTYP Scaling type to be used for frequency bands. 5
LIN (Default
LOG
ALOG
ADAPF Adaptive factor for generation of frequency bands (ratio between the maximum and minimum frequency for each band).

Default = 1.2 (Real)

Comments

  1. Adaptive Perfectly Matched Layer (APML) mesh at the outer boundary of the acoustic domain ensures the following conditions are satisfied:
    • Acoustic waves at the interface do not get reflected.
    • Waves which pass through this layer are attenuated.
  2. Direct and Modal Frequency Response Analysis are currently supported.
  3. The four continuation lines in this PACPML entry allow the definition of the following characteristics:
    • Line 1 – Definition and element formulation.
    • Line 2 – Adaptive APML mesh generation properties.
    • Line 3 – Distance field computation (determines the complex coordinate stretch direction).
    • Line 4 – Defines the frequency bands.
  4. The modified integration flag in MODINT may be turned on to reduce the dispersion error (which is the error in the computed wavelength, measured relative to the actual wavelength, for an acoustics solution).
  5. Adaptive meshing is automatically carried out either via HyperMesh or SimLab to generate the domain of the perfectly matched layer. It may be inefficient to generate a single PML mesh for the entire frequency range, as this mesh would be constrained to handle the full range of loading frequencies (from the lowest to the highest). A single mesh which handles the complete range of frequencies may lead to a very thick PML mesh layer and at the same time, a very fine mesh. Therefore, it is a good practice to divide the frequency range for mesh generation into multiple frequency bands. Likewise, it is not an efficient practice to generate one PML mesh for every single frequency of analysis.
  6. A single adaptive mesh is generated per frequency band.
  7. The regularization parameter is employed along with the pole in conjunction with the gradient of the distance field to determine the direction of the complex coordinate stretch.
  8. The order of priority for frequency band generation is MFID > (NBND+BNDTYP) > ADAPF. If none of them are input, then the default of ADAPF = 1.2 is applied.
  9. The NBND and BNDTYP fields provide a way to determine the frequency bands based on the following:
    Where:
    N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@
    Number of bands (NBND)
    F i , F i + 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaKamaeaaca WGgbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadAeadaWgaaWcbaGa amyAaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzxaaaaaa@3E11@ where i=1,2,3,...,N MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9iaaigdacaGGSaGaaGOmaiaacYcacaaIZaGaaiilaiaac6cacaGG UaGaaiOlaiaacYcacaWGobaaaa@3FC5@
    Frequency bands
    F 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaaIXaaabeaaaaa@37A6@ and F N+1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGobGaey4kaSIaaGymaaqabaaaaa@395B@
    Minimum and maximum loading frequencies
    Then based on the band distribution type (BNDTYP), the frequency bands are generated as:
    • Linear (BNDTYP=LIN) provides equal spacing for frequency bands.(1)
      F i = F 1 + i 1 N F N + 1 F 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGPbaabeaakiabg2da9iaadAeadaWgaaWcbaGaaGymaaqa baGccqGHRaWkdaWcaaqaaiaadMgacqGHsislcaaIXaaabaGaamOtaa aadaqadaqaaiaadAeadaWgaaWcbaGaamOtaiabgUcaRiaaigdaaeqa aOGaeyOeI0IaamOramaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawM caaaaa@46A3@
    • Logarithmic (BNDTYP=LOG) provides larger spacing at higher frequencies.(2)
      F i = F 1 F N + 1 F 1 i 1 N MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGPbaabeaakiabg2da9iaadAeadaWgaaWcbaGaaGymaaqa baGcdaqadaqaamaalaaabaGaamOramaaBaaaleaacaWGobGaey4kaS IaaGymaaqabaaakeaacaWGgbWaaSbaaSqaaiaaigdaaeqaaaaaaOGa ayjkaiaawMcaamaaCaaaleqabaWaaeWaaeaadaWcaaqaaiaadMgacq GHsislcaaIXaaabaGaamOtaaaaaiaawIcacaGLPaaaaaaaaa@469A@
    • Anti-logarithmic (BNDTYP=ALOG) provides larger spacing at lower frequencies.(3)
      F i = log 10 10 F 1 + i 1 N 10 F N + 1 10 F 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGPbaabeaakiabg2da9iGacYgacaGGVbGaai4zaiaaigda caaIWaWaamWaaeaacaaIXaGaaGimamaaCaaaleqabaGaamOramaaBa aameaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiaadMgacqGHsisl caaIXaaabaGaamOtaaaadaqadaqaaiaaigdacaaIWaWaaWbaaSqabe aacaWGgbWaaSbaaWqaaiaad6eacqGHRaWkcaaIXaaabeaaaaGccqGH sislcaaIXaGaaGimamaaCaaaleqabaGaamOramaaBaaameaacaaIXa aabeaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@51C3@
  10. ADAPF provides an adaptive factor which defines each frequency band as:(4)
    A D A P F n , A D A P F n + 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaKamaeaaca WGbbGaamiraiaadgeacaWGqbGaamOramaaCaaaleqabaGaamOBaaaa kiaacYcacaWGbbGaamiraiaadgeacaWGqbGaamOramaaCaaaleqaba GaamOBaiabgUcaRiaaigdaaaaakiaawIcacaGLDbaaaaa@4471@
    Where, n = 0 , 1 , 2 , ... MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2 da9iaaicdacaGGSaGaaGymaiaacYcacaaIYaGaaiilaiaac6cacaGG UaGaaiOlaaaa@3E44@ .