NLPCI

Bulk Data Entry Define the parameters for arc-length method to solve post-buckling problems in nonlinear static analysis.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
NLPCI ID TYPE MINALR MAXALR SCALE DESITER MAXINC
The following continuation lines are used to define additional control parameters for load factor control (LFCTRL), displacement control (DISPCTRL) and the arc-length control (ALCTRL). Each continuation line is optional and can be specified as needed.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
LFCTRL MAXLF MAXDLF
DISPCTRL MAXDISP G C
ALCTRL OPTION

Example 1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
NLPCI 5

Example 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
NLPCI 5 CRIS 0.80 1.20 1.0 8 100
ALCTRL AUTO
LFCTRL 1.50 0.20
DISPCTRL 3.6 256 3

Definitions

Field Contents SI Unit Example
ID Set identification number.

Must have the same ID as the NLPARM Bulk Data Entry.

No default (Integer > 0)

TYPE Constraint function type.
CRIS (Default)
Crisfield
RIKS
Riks
MRIKS
Modified Riks
MINALR Minimum arc-length ratio.

Default = 0.50 (Real ≥ 0.0)

MAXALR Maximum arc-length ratio.

Default = 1.50 (Real ≥ 0.0)

SCALE Scale parameter. Can be used to consider the different dimensions of displacement and loading in the arc-length constraint equation.

Default = 1.0 (Real ≥0.0)

DESITER Desired number of iterations.

Default = 5 (Integer > 0)

MAXINC Maximum number of increments to terminate the analysis.

Default = 100 (Real > 0.0)

MAXLF Maximum (absolute) value of load factor ( λ ) to terminate the analysis.

Default = 1.0 (Real > 0.0)

MAXDLF Maximum of desired incremental load factor ( Δ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcqaH7oaBaaa@3BF1@ ).

No default (Real > 0.0)

MAXDISP Maximum displacement to terminate the analysis.

No default (Real > 0.0)

G Grid point Identification Number for which the MAXDISP is checked.

No default (Integer > 0)

C Degree of freedom of grid GID.

No default (Integer > 0)

OPTION Arc-length control (ALCTRL) option.
ON (Default)
Always turned on arc-length method.
AUTO
Automatically turns on and off arc-length method.

Comments

  1. The NLPCI Bulk Data Entry is needed to activate the arc-length method. The ID must be the same as the corresponding NLPARM Bulk Data Entry. NLPCI is not a Subcase Information Entry.
  2. The initial load factor is determined according to the corresponding NLPARM card using the TTERM field.
  3. A LOAD Subcase Information Entry must be specified to define the scalable load. DLOAD is not allowed because there is no definition of time (pseudo time) in arc-length method.
  4. The TYPE field defines the type of constraint function for arc-length method. The SCALE field is used to consider the different dimensions of displacement and loading. The default value of SCALE is 1.0, which means the weighting factor of displacement and loading are the same. With SCALE=1.0 the Crisfield method uses a spherical constraint function, and by setting SCALE=0.0 a cylindrical function can be achieved. If SCALE is approaching infinity, the arc-length method behaves like the standard load-controlled method; on the opposite, if SCALE is approaching zero, the arc-length method is similar as the displacement-controlled method. In most cases it is recommended to use the default value 1.0.
  5. The DESITER field defines the desired iteration number for the scaling of arc-length in the next increment n+1, by considering the number of iterations in the previous increment n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGUbaaaa@39CA@ , denoted as I n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGUbaabeaaaaa@37E4@ . The relation is:
    Δ s n + 1 = ( D E S I T E R I n ) 0.5 Δ s n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam 4CamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpdaqa daqaamaalaaabaGaamiraiaadweacaWGtbGaamysaiaadsfacaWGfb GaamOuaaqaaiaadMeadaWgaaWcbaGaamOBaaqabaaaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaIWaGaaiOlaiaaiwdaaaGccqqHuoarca WGZbWaaSbaaSqaaiaad6gaaeqaaaaa@4B43@

    The MINALR and MAXALR fields are used in addition to DESITER, to limit the arc-length ratio.

    M I N A L R Δ s n + 1 Δ s n M A X A L R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadM eacaWGobGaamyqaiaadYeacaWGsbGaeyizIm6aaSaaaeaacqqHuoar caWGZbWaaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOqaaiabfs 5aejaadohadaWgaaWcbaGaamOBaaqabaaaaOGaeyizImQaamytaiaa dgeacaWGybGaamyqaiaadYeacaWGsbaaaa@4BE0@

    If MINALR and MAXALR are both specified explicitly as 1.0, the arc-length Δ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam 4Caaaa@3855@ remains constant. If the analysis is easy to converge; therefore, I n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGUbaabeaaaaa@37E4@ is small (smaller than DESITER) and the arc-length will be expanded to much further than the last increment. Otherwise, the arc-length will be shrunk to much less. If low or rough accuracy is acceptable, DESITER can be increased such that a bigger arc-length than default can be achieved. On the opposite, if the model is highly nonlinear, DESITER can be reduced to use generally smaller arc-lengths.

  6. The fields MAXINC, MAXLF, and MAXDISP can all be used to terminate the analysis, as long as their values are reached. MAXINC has a default value of 100. MAXLF means the maximum absolute value of load factor, which defines both the lower and the upper limits. MAXLF has a default (absolute) value of 1.0. The analysis will be terminated if the load factor is either smaller than -1.0 or larger than 1.0. The value MAXLF can be smaller than 1.0; if the value MAXLF is larger than 1.0, it will not stop at load level 1.0 in arc-length method, TTERM in the NLPARM card is ignored for the termination of the analysis.
    Note: MAXINC should not be smaller than the number of incremental results defined in NLOUT.
  7. The MAXDLF field means maximum desired incremental load factor Δ λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq 4UdWgaaa@3911@ , which has a similar function of DESITER to scale the arc-length. A minimum load increment is not needed.
  8. The OPTION field in the ALCTRL continuation line is used for the activation of arc-length control method.
    • With the option ON, the arc-length method is always turned on (default).
    • With the option AUTO, the arc-length method can be turned on and off automatically for multiple times, before and after the limit points.
  9. The theoretical background to the different constraint functions is briefly described as follows. The equilibrium equation in the nonlinear static analysis can be expressed as:
    R n + 1 = F int , n + 1 ( u n + 1 ) λ n + 1 P = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOuamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWHgbWaaSba aSqaaiGacMgacaGGUbGaaiiDaiaacYcacaWGUbGaey4kaSIaaGymaa qabaGcdaqadaqaaiaahwhadaWgaaWcbaGaamOBaiabgUcaRiaaigda aeqaaaGccaGLOaGaayzkaaGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6 gacqGHRaWkcaaIXaaabeaakiaahcfacqGH9aqpcaaIWaaaaa@4F09@
    Where,
    n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamOBaaaa@36EB@
    Number of the last converged increment
    n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaai aad6gacqGHRaWkcaaIXaaabeaaaaa@38B3@
    Next number
    R n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOuamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@398E@
    Unbalanced force vector
    F int , n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOramaaBa aaleaaciGGPbGaaiOBaiaacshacaGGSaGaamOBaiabgUcaRiaaigda aeqaaaaa@3D0B@
    Internal force vector
    u n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyDamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@39B1@
    Unknown or displacement vector
    λ n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaaa@3A67@
    Load factor
    P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiuaaaa@36D0@
    External force vector

    To solve the post-buckling problem, an additional constraint equation is added with the load factor as an additional unknown, which is generally expressed as:

    f n + 1 = f n + 1 ( u n + 1 , λ n + 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpcaWGMbWaaSba aSqaaiaad6gacqGHRaWkcaaIXaaabeaakmaabmaabaGaaCyDamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccaGGSaGaeq4UdW2aaSba aSqaaiaad6gacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaaaa@48D6@

    Where, f n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@399E@ is a function of both u n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyDamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@39B1@ and λ n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaad6gacqGHRaWkcaaIXaaabeaaaaa@3A67@ .

    The constraint function of Crisfield method can be expressed as:

    f n + 1 = ( u n + 1 u n ) T ( u n + 1 u n ) + ψ 2 ( λ n + 1 λ n ) 2 P T P ( Δ s n + 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpdaqadaqaaiaa hwhadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyOeI0IaaC yDamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaamaaCaaaleqa baGaamivaaaakmaabmaabaGaaCyDamaaBaaaleaacaWGUbGaey4kaS IaaGymaaqabaGccqGHsislcaWH1bWaaSbaaSqaaiaad6gaaeqaaaGc caGLOaGaayzkaaGaey4kaSIaeqiYdK3aaWbaaSqabeaacaaIYaaaaO WaaeWaaeaacqaH7oaBdaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqa aOGaeyOeI0Iaeq4UdW2aaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaaaaOGaaCiuamaaCaaaleqabaGaamiv aaaakiaahcfacqGHsisldaqadaqaaiabfs5aejaadohadaWgaaWcba GaamOBaiabgUcaRiaaigdaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaaaa@6627@

    Where,
    ψ
    Scaling factor, due to the different dimensions of displacement and load.
    Δ s n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam 4CamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaaaaa@3B10@
    Desired arc-length in the current increment.
    Note: The scaling factor is not the same as the value of SCALE field.

    The Riks method is expressed as:

    f n + 1 = ( u n + 1 1 u n ) T Δ u + ( λ n + 1 1 λ n ) Δ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpdaqadaqaaiaa hwhadaqhaaWcbaGaamOBaiabgUcaRiaaigdaaeaacaaIXaaaaOGaey OeI0IaaCyDamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaamaa CaaaleqabaGaamivaaaakiabfs5aejaahwhacqGHRaWkdaqadaqaai abeU7aSnaaDaaaleaacaWGUbGaey4kaSIaaGymaaqaaiaaigdaaaGc cqGHsislcqaH7oaBdaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPa aacqqHuoarcqaH7oaBaaa@55C3@

    Where,
    u n + 1 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyDamaaDa aaleaacaWGUbGaey4kaSIaaGymaaqaaiaaigdaaaaaaa@3A6C@
    Displacement in the first iteration.
    Δ u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaC yDaaaa@385A@
    Correction of displacement.
    Δ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq 4UdWgaaa@3910@
    Correction of load factor in each iteration.

    The modified Riks method is expressed as:

    f n + 1 = ( u n + 1 u n ) T Δ u + ( λ n + 1 λ n ) Δ λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqpdaqadaqaaiaa hwhadaWgaaWcbaGaamOBaiabgUcaRiaaigdaaeqaaOGaeyOeI0IaaC yDamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaamaaCaaaleqa baGaamivaaaakiabfs5aejaahwhacqGHRaWkdaqadaqaaiabeU7aSn aaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGHsislcqaH7oaB daWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqqHuoarcqaH7o aBaaa@544B@

    Basically, the modified Riks method performs better than the original Riks method because the direction of correction is updated after every iteration, thus the convergence behavior is faster. Generally, the default setting of CRIS method is suggested for the most cases.

  10. Subcase continuation with arc-length method is supported. Both the previous and the continuing subcases can be specified in a NLPCI card. In the continuing subcase, the equilibrium equation is expressed as:
    R = F int F ext = F int P 1 λ ( P 2 P 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOuaiabg2 da9iaahAeadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaakiabgkHi TiaahAeadaWgaaWcbaGaaeyzaiaabIhacaqG0baabeaakiabg2da9i aahAeadaWgaaWcbaGaciyAaiaac6gacaGG0baabeaakiabgkHiTiaa hcfadaWgaaWcbaGaaGymaaqabaGccqGHsislcqaH7oaBdaqadaqaai aahcfadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWHqbWaaSbaaSqa aiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@50C9@
    Where,
    P 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiuamaaBa aaleaacaaIXaaabeaaaaa@37B7@
    Load vector at the end of the previous subcase.
    The previous subcase can be specified with or without a NLPCI card.
    P 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiuamaaBa aaleaacaaIXaaabeaaaaa@37B7@
    Load vector in the continuing subcase.
    For example, if you want to apply an additional load based on a constant load. The constant load should be defined in the first subcase as P 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiuamaaBa aaleaacaaIXaaabeaaaaa@37B7@ . Then both the additional load and the constant load will be defined in the continuing subcase as P 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiuamaaBa aaleaacaaIXaaabeaaaaa@37B7@ . The arc-length method will scale the additional load which is P 2 P 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCiuamaaBa aaleaacaaIYaaabeaakiabgkHiTiaahcfadaWgaaWcbaGaaGymaaqa baaaaa@3A6F@
  11. The MONITOR card can be used together with NLPCI to monitor the load factor in real time.
  12. Some parameters of the NLADAPT card have different meanings when used with arc-length method (NLPCI card).
    • NLADAPT,DIRECT,YES will turn off arc-length method.
    • DTMIN and DTMAX will be the limits of the arc-length factor. The arc-length factor is defined as the ratio of the current arc-length divided by the initial arc-length. If DTMIN is specified, the analysis will be terminated once the arc-length factor is smaller than this minimum value. If DTMAX is specified, the arc-length factor will be limited to ensure that it will not exceed this maximum value.
  13. NLOUT can be used to request the output of the increment results. The increment size of load factor near the limit point can be very small, thus the solver may have a lot of increments. Therefore, it is recommended to use a larger NINT in the NLOUT card if detailed history of the results is needed.
  14. The arc-length method can also be used along with imperfection. For more details, refer to Imperfection in the User Guide.
  15. Restart analysis is currently not supported.