Bulk Data Entry Defines a link of one design variable to one or more other design variables defined by a DEQATN card. The equation inputs come from the referenced DESVAR values and the constants defined on the DTABLE card.

## Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DLINK2 ID DDVID EQUID or FUNC
DESVAR DVID1 DVID2 DVID3 DVID4 DVID5 DVID6 DVID7
DVID8 DVID9 etc.
DTABLE LABL1 LABL2 LABL3 LABL4 LABL5 LABL6 LABL7
LABL8 etc.

## Example

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DESVAR 5 6

## Associated Cards

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DESVAR 5 X 0.0 -1.0 1.0
DESVAR 6 Y 0.0 -1.0 1.0
DESVAR 7 R 0.0 -1.0 1.0

## Definitions

Field Contents SI Unit Example
ID Relationship identity. Each DLINK2 entry should have a unique ID.

No default (Integer > 0)

DDVID Dependent Design Variable identification number.

(Integer > 0)

EQID Equation ID of DEQATN data.

No default (Integer > 0)

FUNC Function to be applied to the arguments.2

(Character)

DESVAR Indicates DESVAR ID numbers follow.
DVIDi DESVAR ID.

No default (Integer > 0)

DTABLE Indicates DTABLE labels follow.
LABLi Constant label on DTABLE card.

No default (Character)

1. The main application for this entity is to link shape design variables with each other through equations. DVPREL2 should be used for linking sizing design variables with each other through equations.
2. The following functions can be used instead of an EQUID. If FUNC is used, the DEQATN entry is no longer needed. The functions are applied to all arguments on the DLINK2 regardless of their type.
Function Description Formula
SUM Sum of arguments $\mathit{SUM}\left({y}_{1},{y}_{2}\dots {y}_{m}\right)=\sum _{j=1}^{m}{y}_{j}$
AVG Average of arguments $\mathit{AVG}\left({y}_{1},{y}_{2},\dots {y}_{m}\right)=\left[\sum _{j=1}^{m}{y}_{j}\right]/m$
SSQ Sum of square of arguments $\mathit{SSQ}\left({y}_{1},{y}_{2}\dots {y}_{m}\right)=\sum _{j=1}^{m}{y}_{j}^{2}$
RSS Square root of sum of squares of arguments $\mathit{RSS}\left({y}_{1},{y}_{2}\dots {y}_{m}\right)=\sqrt{\sum _{j=1}^{m}{y}_{j}^{2}}$
MAX Maximum of arguments
MIN Minimum of arguments
SUMABS Sum of absolute value of arguments $\mathit{SUM}\left({y}_{1},{y}_{2}\dots {y}_{m}\right)=\sum _{j=1}^{m}|{y}_{j}|$
AVGABS Average of absolute value of arguments $\mathit{AVG}\left({y}_{1},{y}_{2}\dots {y}_{m}\right)=\left[\sum _{j=1}^{m}|{y}_{j}|\right]/m$
MAXABS Maximum of absolute arguments
MINABS Minimum of absolute value of arguments
RMS Root mean square value of arguments $\mathit{RMS}\left({y}_{1},{y}_{2},\dots ,{y}_{m}\right)=\sqrt{\frac{1}{m}\left(\sum _{i=1}^{m}{y}_{i}^{2}\right)}$
3. This card is represented as an design variable link in HyperMesh.