DMI

Bulk Data Entry Defines matrix (real) data blocks for Aeroelastic Analysis.

[ NAME ]=[ x 11 x 12 ... x 1n x 21 x 22 ... x 2n . . . . x m1 ... ... x mn ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGobGaamyqaiaad2eacaWGfbaacaGLBbGaayzxaaGaeyypa0ZaamWa aeaafaqabeabeaaaaaqaaiaadIhadaWgaaWcbaGaaGymaiaaigdaae qaaaGcbaGaamiEamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaGG UaGaaiOlaiaac6caaeaacaWG4bWaaSbaaSqaaiaaigdacaWGUbaabe aaaOqaaiaadIhadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaamiE amaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacaGGUaGaaiOlaiaac6 caaeaacaWG4bWaaSbaaSqaaiaaikdacaWGUbaabeaaaOqaaiaac6ca aeaacaGGUaaabaGaaiOlaaqaaiaac6caaeaacaWG4bWaaSbaaSqaai aad2gacaaIXaaabeaaaOqaaiaac6cacaGGUaGaaiOlaaqaaiaac6ca caGGUaGaaiOlaaqaaiaadIhadaWgaaWcbaGaamyBaiaad6gaaeqaaa aaaOGaay5waiaaw2faaaaa@5FB8@

The matrix is defined by a single header entry and one or more column entries. Only one header entry is required.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DMI NAME 0 FORM TIN TOUT M N
A column entry is required for each column with non-zero elements.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DMI NAME J I1 A(I1, J) A(I1+1, J) I2
A(I2, J) etc

Example 1

Defines a matrix named W2GJ, with 4 rows and 1 column and entries starting from 2 through 4 in column 1 are 0.0017.
[ W2GJ ]=[ 0.0 0.0017 0.0017 0.0017 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGxbGaaGOmaiaadEeacaWGkbaacaGLBbGaayzxaaGaeyypa0ZaamWa aeaafaqabeabbaaaaeaacaaIWaGaaiOlaiaaicdaaeaacaaIWaGaai OlaiaaicdacaaIWaGaaGymaiaaiEdaaeaacaaIWaGaaiOlaiaaicda caaIWaGaaGymaiaaiEdaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaG ymaiaaiEdaaaaacaGLBbGaayzxaaaaaa@4D5E@
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DMI W2GJ 0 2 1 1 4 1
DMI W2GJ 1 2 0.0017 THRU 4

Example 2

Defines a matrix named W2GJ, with 4 rows and 1 column and entries starting from 2 are defined subsequently in column 1.
[ W 2 G J ] = [ 0.0 0.0017 0.0113 0.0045 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGxbGaaGOmaiaadEeacaWGkbaacaGLBbGaayzxaaGaeyypa0ZaamWa aeaafaqabeabbaaaaeaacaaIWaGaaiOlaiaaicdaaeaacaaIWaGaai OlaiaaicdacaaIWaGaaGymaiaaiEdaaeaacaaIWaGaaiOlaiaaicda caaIXaGaaGymaiaaiodaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaG inaiaaiwdaaaaacaGLBbGaayzxaaaaaa@4D5C@
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DMI W2GJ 0 2 1 1 4 1
DMI W2GJ 1 2 0.0017 0.0113 0.0045

Example 3

Defines a matrix named W2GJ, with 4 rows and 1 column and entries starting from 2 are defined with explicit row numbers in column 1.
[ W 2 G J ] = [ 0.0 0.0017 0.0125 0.0713 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGxbGaaGOmaiaadEeacaWGkbaacaGLBbGaayzxaaGaeyypa0ZaamWa aeaafaqabeabbaaaaeaacaaIWaGaaiOlaiaaicdaaeaacaaIWaGaai OlaiaaicdacaaIWaGaaGymaiaaiEdaaeaacaaIWaGaaiOlaiaaicda caaIXaGaaGOmaiaaiwdaaeaacaaIWaGaaiOlaiaaicdacaaI3aGaaG ymaiaaiodaaaaacaGLBbGaayzxaaaaaa@4D61@
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
DMI W2GJ 0 2 1 1 4 1
DMI W2GJ 1 2 0.0017
3 0.0125
4 0.0713

Definitions

Field Contents SI Unit Example
NAME Name of the matrix. 1

(One to eight alpha-numeric characters, the first of which must be alphabetic.)

FORM Matrix form.
2
General rectangular matrix.
3
Diagonal matrix (In this case, M = number of rows, N = 1).

(Integer)

TIN Matrix input type.
1
Real, single precision.
2
Real, double precision.

One entry is used per aerodynamic panel/element. The size of these matrices should be the number of aerodynamic elements in the model.

(Integer)

TOUT Matrix output type.

This field is currently unused, but a positive integer needs to be specified.

M Number of rows in NAME.

(Integer > 0)

N Number of columns in NAME.

(Integer > 0)

0 Indicates the header line.
J Column number of NAME.

(Integer > 0)

I1, I2, etc. Row number of NAME, which indicates the beginning of a group of non-zero elements in the column.

(Integer > 0)

A(Ix, J) Value of element in row Ix and column J.

(Real)

Comments

  1. The DMI Bulk Data Entry is only supported for Aeroelastic Analysis. The following names are supported and any other names are ignored.
    • WKK or WTFACT: Defines a diagonal matrix for an aero element where each element has its own weighting coefficient. This is relevant for both response (trim) and stability (divergence and flutter) analysis. The aerodynamic loads are corrected by pre-multiplying the aerodynamic forces by a weighting matrix.
    • FA2J: Defines initial pressure coefficients for a panel or initial line doublet strength for a body element in Static Aeroelastic Analysis. This is relevant only for response (trim) analysis.
    • W2GJ: Defines initial downwash for an aero element in Static Aeroelastic Analysis. This is relevant only for response (trim) analysis.

      An example use-case for DMI in aeroelasticity is when a curved wing needs to be modeled. Instead of designing a complex geometry, a W2GJ matrix with suitable downwash can be defined for panels along the wing, which can account for the gradual change in the angle of attack.

  2. If the aeroelastic model does not have any slender bodies (CAERO2), the values in a DMI matrix are referenced in the aeroelastic panels as follows.
    • The entries of DMI must be a column vector of size equal the number of aeroelastic boxes across all boxes in a CAERO1 Bulk Data Entry.
    • When multiple CAERO1 Bulk Data Entries are present, then the box number set of each CAERO1 is arranged in ascending order of the CAERO1 IDs.
    • For example, consider CAERO1 #1000 and CAERO1 # 2000 which have four and six boxes respectively and a DMI Bulk Data Entry defining initial downwash matrix (W2GJ).
    Figure 1.


    Figure 2.


    Then the values from the DMI Bulk Data Entry are applied as follows on the boxes.
    W 2 G J = 0.10 0.20 0.0 0.40 0.30 0.35 0.50 0.40 0.60 0.31 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaik dacaWGhbGaamOsaiabg2da9maadmaabaqbaeqabOqaaaaaaeaacaaI WaGaaiOlaiaaigdacaaIWaaabaGaaGimaiaac6cacaaIYaGaaGimaa qaaiaaicdacaGGUaGaaGimaaqaaiaaicdacaGGUaGaaGinaiaaicda aeaacaaIWaGaaiOlaiaaiodacaaIWaaabaGaaGimaiaac6cacaaIZa GaaGynaaqaaiaaicdacaGGUaGaaGynaiaaicdaaeaacaaIWaGaaiOl aiaaisdacaaIWaaabaGaaGimaiaac6cacaaI2aGaaGimaaqaaiaaic dacaGGUaGaaG4maiaaigdaaaaacaGLBbGaayzxaaaaaa@5866@
    CAERO1 ID Box ID Initial Downwash
    1000 1000 0.10
    1001 0.20
    1002 0.0
    1003 0.40
    2000 2000 0.30
    2001 0.35
    2002 0.50
    2003 0.40
    2004 0.60
    2005 0.31
  3. If the aeroelastic model contains slender bodies (CAERO2), the values corresponding to the bodies in the DMI vector must be put behind those for the panels.
    • The size of the column vector corresponding to the bodies is equal to the number of Z bodies and/or Y bodies plus two times the number of ZY bodies.
    • When multiple CAERO2 entries are present, the element number set of each CAERO2 is arranged in ascending order of the CAERO2 IDs.
    • Following the example of Figure 1 and Figure 2, assume that there are two additional bodies with one of them being a ZY body (CAERO2 #3000) and the other being a Z body (CAERO2 #4000).
      Figure 3.


    Then the complete set of values from the DMI entry are applied as follows:
    W2GJ= 0.10 0.20 0.0 0.40 0.30 0.35 0.50 0.40 0.60 0.31 0.11 0.12 0.13 0.21 0.22 0.23 0.31 0.31 0.33 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaaik dacaWGhbGaamOsaiaaykW7cqGH9aqpcaaMc8+aamWaaqaabeqaaiaa icdacaGGUaGaaGymaiaaicdaaeaacaaIWaGaaiOlaiaaikdacaaIWa aabaGaaGimaiaac6cacaaIWaaabaGaaGimaiaac6cacaaI0aGaaGim aaqaaiaaicdacaGGUaGaaG4maiaaicdaaeaacaaIWaGaaiOlaiaaio dacaaI1aaabaGaaGimaiaac6cacaaI1aGaaGimaaqaaiaaicdacaGG UaGaaGinaiaaicdaaeaacaaIWaGaaiOlaiaaiAdacaaIWaaabaGaaG imaiaac6cacaaIZaGaaGymaaqaaiaaicdacaGGUaGaaGymaiaaigda aeaacaaIWaGaaiOlaiaaigdacaaIYaaabaGaaGimaiaac6cacaaIXa GaaG4maaqaaiaaicdacaGGUaGaaGOmaiaaigdaaeaacaaIWaGaaiOl aiaaikdacaaIYaaabaGaaGimaiaac6cacaaIYaGaaG4maaqaaiaaic dacaGGUaGaaG4maiaaigdaaeaacaaIWaGaaiOlaiaaiodacaaIXaaa baGaaGimaiaac6cacaaIZaGaaG4maaaacaGLBbGaayzxaaaaaa@757E@
    CAERO1 ID Box ID Initial Downwash
    1000 1000 0.10
    1001 0.20
    1002 0.0
    1003 0.40
    2000 2000 0.30
    2001 0.35
    2002 0.50
    2003 0.40
    2004 0.60
    2005 0.31
    3000 3000(Y) 0.11
    3000(Z) 0.12
    3001(Y) 0.13
    3001(Z) 0.21
    3002(Y) 0.22
    3002(Z) 0.23
    4000 4000(Z) 0.31
    4001(Z) 0.32
    4002(Z) 0.33
  4. Only non-zero terms need be entered.
  5. Leading and trailing zeros in a column do not have to be entered. However, a blank field between non-zero fields on this entry is not equivalent to a zero. If a zero input is required, the appropriate type zero must be entered (0.0 or 0.0D0).
  6. If A(Ix, J) is followed by THRU in the next field and an integer row number Ix after the THRU, then A(lx, J) will be repeated in each row through Ix. THRU must follow an element value.
    For example, the entries for a real matrix FA2J would appear as:
    (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
    DMI FA2J J I1 A(I1, J) I1 A(I2, J)
    DMI FA2J 1 2 1.0 THRU 10 12 2.0

    These entries will cause the first column of the matrix FA2J to have a zero in row 1, the values 1.0 in rows 2 through 10, a zero in row 11, and 2.0 in row 12.

  7. Each column must be a single logical entry. The terms in each column must be specified in increasing row number order.
  8. I1 must be specified. I2, etc. are not required, if their matrix elements follow the preceding element in the next row of the matrix.
  9. The DMIG entry is more convenient for matrices with rows and columns that are referenced by grid or scalar point degrees-of-freedom.
  10. For more details, refer to the Aeroelastic Analysis in the User Guide.