# *MAT_054 (ENHANCED_COMPOSITE_DAMAGE)

LS-DYNA Input Interface KeywordDefines an orthotropic shell composite material for unidirectional layers with Chang-Chang failure model.

## Format

(1) (2) (3) (4) (5) (6) (7) (8)
*MAT_054 or *MAT_ENHANCED_COMPOSITE_DAMAGE
mat_ID ${\rho }_{i}$ E1 E2 E3 $\nu$ 12
G12 G23 G31 AOPT
XP YP ZP A1 A2 A3 MANGLE
V1 V2 V3 D1 D2 D3
TFAIL
XC XT YC YT SC BETA
Blank card
Blank card
Blank card

## Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer)

${\rho }_{i}$ Initial density .

(Real)

$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$
E1 Young’s modulus in material directions 1.

(Real)

$\left[\text{Pa}\right]$
E2 Young’s modulus in material directions 2.

(Real)

$\left[\text{Pa}\right]$
E3 Young’s modulus in material directions 3.

(Real)

$\left[\text{Pa}\right]$
$\nu$ 12 Poisson’s ratio between directions 1 and 2.

(Real)

$\left[\text{Pa}\right]$
G12 Shear modulus in direction 12.

(Real)

$\left[\text{Pa}\right]$
G23 Shear modulus in direction 23.

(Real)

$\left[\text{Pa}\right]$
G31 Shear modulus in direction 31.

(Real)

$\left[\text{Pa}\right]$
AOPT Material axis flag.
= 0 (Default)
Orthotropic axes defined by element nodes.
= 1
Orthotropic axes defined by the vector between reference point and the solid center.
= 3
Orthotropic axes defined by Vector V and element normal vector.
= 4
Orthotropic axes defined with reference point and normal to vector V.
AOPT < 0
The absolute value AOPT is a coordinate system identifier which defines the orthotropic directions.

(Integer)

XP, YP, ZP Coordinates of reference point for AOPT = 1 and 4.

(Real)

A1, A2, A3 Vector defining first orthotropy direction for AOPT = 2.

(Real)

MANGLE Material angle for AOPT = 1 and 3.

(Real)

V1, V2, V3 A vector which in combination with element normal defines the first orthotropy direction for AOPT = 3 and 4.

(Real)

D1, D2, D3 Components of vector for AOPT = 2.

(Real)

TFAIL Time step for element deletion.

(Real)

$\left[\text{s}\right]$
MANGLE Material angle for AOPT = 0 and 3.

(Real)

$\left[\mathrm{deg}\right]$
XT Yield stress in tension in direction 1.

(Real)

$\left[\text{Pa}\right]$
XC Yield stress in compression in direction 1.

(Real)

$\left[\text{Pa}\right]$
YT Yield stress in tension in direction 2.

(Real)

$\left[\text{Pa}\right]$
YC Yield stress in compression in direction 2.

(Real)

$\left[\text{Pa}\right]$
SC Maximum shear stress.

(Real)

$\left[\text{Pa}\right]$
BETA Shear scaling factor.

Default = 0 (Real)