/MAT/LAW48 (ZHAO)
Block Format Keyword This law describes the Zhao material law used to model an elasto-plastic strain rate dependent materials. The law is applicable only for solids and shells.
The global plasticity option for shells (N=0 in shell property keyword) is not available in the actual version.
Format
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | 
|---|---|---|---|---|---|---|---|---|---|
| /MAT/LAW48/mat_ID/unit_ID or /MAT/ZHAO/mat_ID/unit_ID | |||||||||
| mat_title | |||||||||
| E | |||||||||
| A | B | n | Chard | ||||||
| C | D | m | EI | k | |||||
| Fcut | |||||||||
Definition
| Field | Contents | SI Unit Example | 
|---|---|---|
| mat_ID | Material identifier. (Integer, maximum 10 digits)  | 
              |
| unit_ID | Unit identifier. (Integer, maximum 10 digits)  | 
              |
| mat_title | Material title. (Character, maximum 100 characters)  | 
              |
| Initial density. (Real)  | 
              ||
| E | Young's modulus. (Real)  | 
              |
| Poisson's ratio. (Real)  | 
              ||
| A | Plasticity yield
                stress. (Real)  | 
              |
| B | Plasticity hardening
                  parameter. (Real)  | 
              |
| n | Plasticity hardening exponent. Default = 1.0 (Real)  | 
              |
| Chard | Plasticity Iso-kinematic hardening factor.
 Default = 0.0 (Real)  | 
              |
| Plasticity maximum stress. Default = 1030 (Real)  | 
              ||
| C | Relative strain rate
                  coefficient. Default = 1.0 (Real)  | 
              |
| D | Strain rate plasticity factor. Default = 0.0 (Real)  | 
              |
| m | Relative strain rate exponent. Default = 1.0 (Real)  | 
              |
| EI | Strain rate coefficient. Default = 0.0 (Real)  | 
              |
| k | Strain rate exponent. Default = 1.0 (Real)  | 
              |
| Reference strain
                rate. (Real)  | 
              ||
| Fcut | Cutoff frequency for strain rate
                  filtering. Default = 0.0 (Real)  | 
              |
| Failure plastic strain. Default = 1030 (Real)  | 
              ||
| Tensile failure strain 1. Default = 1030 (Real)  | 
              ||
| Tensile failure strain 2. Default = 1030 (Real)  | 
              
Example (Metal)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                   g                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW48/1/1
metal
#              RHO_I 
                .008   
#                  E                  nu
              200000                  .3
#                  A                   B                   n               Chard             sig_max
                 145                 550                 .42                   1                   0
#                  C                   D                   m                  E1                   k
                  35                  47                  .3                 185                  .3
#         eps_rate_0                Fcut
                 .05                   0
#            eps_max              eps_t1              eps_t2
                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
    Comments
- The stress-strain function is based
          on the formula published by Zhao:Where,
- Plastic strain
 - Strain rate
 
 - Except for the strain rate
          formulation, the plasticity curve is strictly identical to a Johnson-Cook model:
Figure 1. 
However, compared to Johnson-Cook, the Zhao law allows a better approximation of a nonlinear strain rate dependent behavior.
 - Yield stress should be strictly positive.
 - The hardening exponent
            n must be less than 1.
Figure 2. 
 - The iso-kinematic hardening
          parameter is defined as:
- If Chard = 0, hardening is a full isotropic model
 - If Chard = 1, hardening uses the kinematic Prager-Ziegler model
 - If 0 < Chard < 1, hardening is interpolated between the two models
 
 - If 
              
            , the term 
              
            , and Equation 1 becomes: 
 - The strain rate filtering is used to smooth strain rate. It is only available for shell and solid elements.
 - When 
          
         reaches 
          
         in one integration point, then based on the element type:
- Shell elements: The corresponding shell element is deleted.
 - Solid elements: The deviatoric stress of the corresponding integral point is permanently set to 0, however, the solid element is not deleted.
 
 - If 
              
             (
              
             is the largest principal strain), the stress is reduced
            as:
 - If , the stress is reduced to 0 (but the element is not deleted).