/MAT/LAW104 (JOHNS_VOCE_DRUCKER)

Block Format Keyword An elasto-plastic constitutive material law using the 6th order Drucker model with a mixed Voce and linear hardening.

Dependence on the Johnson-Cook strain rate and thermal softening effects due to self-heating can also be modeled. The law is available for isotropic shell and solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW104/mat_ID/unit_ID or /MAT/JOHNS_VOCE_DRUCKER/mat_ID/unit_ID
mat_title
ρ i
E v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@36F1@ Ires
σ Y 0 H Q B CDR
CJC ε ˙ 0 Fcut
μ Tref Tini
η Cp ε ˙ i s o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyTdu2dayaacaWaaSbaaSqaa8qacaWGPbGaam4Caiaad+gaa8aa beaaaaa@3AF0@ ε ˙ a d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyTdu2dayaacaWaaSbaaSqaa8qacaWGHbGaamizaaWdaeqaaaaa @39E5@

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
E Young‘s modulus.

(Real)

[ Pa ]
v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaaaa@36F1@ Poisson’s ratio.

(Real)

Ires Resolution method for plasticity.
= 0
Set to 1.
= 1 (Default)
NICE (Next Increment Correct Error) explicit method.
= 2
Newton iterative implicit method.

(Integer)

σ Y 0 Initial yield stress.

(Real)

[ Pa ]
H Linear hardening module.

(Real)

[ Pa ]
Q Voce hardening coefficient.

(Real)

[ Pa ]
B Voce hardening exponent.

(Real)

CDR Drucker coefficient.

(Real)

CJC Johnson-Cook strain rate coefficient.

(Real)

ε ˙ 0 Inviscid limit for the plastic strain rate.

(Real)

[ 1 s ]
Fcut Plastic strain rate filtering frequency.

Default = 10 kHz (Real)

[ 1 s ]
μ Temperature softening slope.

(Real)

[ 1 K ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaaigdaaeaacaWGlbaaaaGaay5waiaaw2faaaaa@3981@
Tref Reference temperature at which the hardening law was identified in experiment.

(Real)

[ K ]
Tini Initial temperature of material in simulation.

(Real)

[ K ]
η Taylor-Quinney coefficient.

(Real)

Cp Specific heat.

(Real)

[ J kgK ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaabQeaaeaacaqGRbGaae4zaiabgwSixlaabUeaaaaacaGL BbGaayzxaaaaaa@3DB3@ .
ε ˙ i s o MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyTdu2dayaacaWaaSbaaSqaa8qacaWGPbGaam4Caiaad+gaa8aa beaaaaa@3AF0@ Plastic strain rate at isothermic conditions.

(Real)

[ 1 s ]
ε ˙ a d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GafqyTdu2dayaacaWaaSbaaSqaa8qacaWGHbGaamizaaWdaeqaaaaa @39E5@ Plastic strain rate at adiabatic conditions.

(Real)

[ 1 s ]

Example (Steel)

/UNIT/123
Example unit
                  Mg                  mm                   s
/MAT/LAW104/1/123
DP450 Steel
#         Init. dens.         Ref. dens.
             7.85E-9                   0
#                  E                  Nu      Ires
            194200.0                 0.3         1
#               YLD0                   H               Qvoce               Bvoce            Cdrucker
             282.972             587.291             208.273              23.869                1.45
#             JCcoef               epsp0                Fcut      
           0.0236071             3.61e-3             10000.0
#                 Mu                Tref                Tini
            1.335e-3                20.0                20.0
#                ETA                  CP             EPSP_IT             EPSP_AD
                 0.9              0.42E9               0.002                0.04
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The law uses 6th order Drucker equivalent stress definition:
    σ e q = k   ( J 2 3 C D R   J 3 2 ) 1 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyzaiaadghaa8aabeaak8qacqGH 9aqpcaWGRbGaaiiOamaabmaapaqaa8qacaWGkbWdamaaDaaaleaape GaaGOmaaWdaeaapeGaaG4maaaakiabgkHiTiaadoeapaWaaSbaaSqa a8qacaWGebGaamOuaaWdaeqaaOWdbiaacckacaWGkbWdamaaDaaale aapeGaaG4maaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaa8aadaah aaWcbeqaa8qadaWccaWdaeaapeGaaGymaaWdaeaapeGaaGOnaaaaaa aaaa@4B63@

    Where, J 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@37F1@ and J 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOsa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@37F1@ are respectively the second and third invariant of the deviatoric stress tensor k =   ( 1 27 C D R   4 27 2 ) 1 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Aaiabg2da9iaacckadaqadaWdaeaapeWaaSaaa8aabaWdbiaa igdaa8aabaWdbiaaikdacaaI3aaaaiabgkHiTiaadoeapaWaaSbaaS qaa8qacaWGebGaamOuaaWdaeqaaOWdbiaacckadaWcaaWdaeaapeGa aGinaaWdaeaapeGaaGOmaiaaiEdapaWaaWbaaSqabeaapeGaaGOmaa aaaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeyOeI0YaaSGa a8aabaWdbiaaigdaa8aabaWdbiaaiAdaaaaaaaaa@48E0@ .

    The parameter CDR is user-defined and allows you to define several yield surfaces (Figure 1). To respect the convexity, its value must respect -27/8 ≤ CDR ≤ 2.25.
    Figure 1. Drucker yield surfaces


  2. The yield function is defined as:
    ϕ =   σ e q 2 σ y l d 2 1 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeqy1dyMaeyypa0JaaiiOamaalaaapaqaa8qacqaHdpWCpaWaa0ba aSqaa8qacaWGLbGaamyCaaWdaeaapeGaaGOmaaaaaOWdaeaapeGaeq 4Wdm3damaaDaaaleaapeGaamyEaiaadYgacaWGKbaapaqaa8qacaaI YaaaaaaakiabgkHiTiaaigdacqGH9aqpcaaIWaaaaa@4854@

    and

    σ Y = σ Y 0 + H ε p + Q 1 e B   ε p 1 + C J C ln ( ε ˙ f ε ˙ 0 ) + 1 μ ( T T r e f )

    Where,
    σ Y 0
    Initial yield stress.
    H
    Linear hardening.
    Q , B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyuaiaacYcacaWGcbaaaa@3859@
    Voce hardening parameters.
    C J C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qa8aadaWgaaWcbaWdbiaadQeacaWGdbaapaqabaaaaa@38C5@
    Johnson-Cook strain rate coefficient.
    ε ˙ f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacuaH1oqzpaGbaiaadaWgaaWcbaWdbiaadAgaa8aabeaaaaa@390C@
    Filtered plastic strain-rate.
    Refer to Filtering in the User Guide.
    ε ˙ 0
    Inviscid limit plastic strain rate.
    μ
    Thermal softening slope.
    The evolution of this flow stress equation with plasticity.
    Figure 2. Flow stress evolution with plasticity


  3. If /HEAT/MAT is not used for this material, the temperature is calculated internally using the incremental formula:
    Δ T =   ω ε ˙ p η   ρ C p σ :  Δε p
    Where,
    η
    Taylor-Quinney coefficient that must respect 0 η   1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkabeE7aOjaacckacqGHKjYOcaaIXaaaaa@3DBB@ .
    ω ( ε ˙ p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3aaeWaa8aabaWdbiqbew7aL9aagaGaamaaBaaaleaapeGa amiCaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@3C9A@
    Coefficient that defines the transition between isothermal and adiabatic conditions (Figure 3).
    ω ( ε p ˙ ) =   ( ε ˙ p   ε ˙ i s o ) 2 ( 3 ε ˙ a d   2 ε ˙ p ε ˙ i s o ) ( ε ˙ a d   ε ˙ i s o ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyYdC3aaeWaa8aabaWaaCbiaeaapeGaeqyTdu2damaaBaaaleaa peGaamiCaaWdaeqaaaqabeaapeGaaiy2caaaaOGaayjkaiaawMcaai abg2da9iaacckadaWcaaWdaeaapeWaaeWaa8aabaWdbiqbew7aL9aa gaGaamaaBaaaleaapeGaamiCaaWdaeqaaOWdbiabgkHiTiaacckacu aH1oqzpaGbaiaadaWgaaWcbaWdbiaadMgacaWGZbGaam4BaaWdaeqa aaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOWaae Waa8aabaWdbiaaiodacuaH1oqzpaGbaiaadaWgaaWcbaWdbiaadgga caWGKbaapaqabaGcpeGaaiiOaiabgkHiTiaaikdacuaH1oqzpaGbai aadaWgaaWcbaWdbiaadchaa8aabeaak8qacqGHsislcuaH1oqzpaGb aiaadaWgaaWcbaWdbiaadMgacaWGZbGaam4BaaWdaeqaaaGcpeGaay jkaiaawMcaaaWdaeaapeWaaeWaa8aabaWdbiqbew7aL9aagaGaamaa BaaaleaapeGaamyyaiaadsgaa8aabeaak8qacqGHsislcaGGGcGafq yTdu2dayaacaWaaSbaaSqaa8qacaWGPbGaam4Caiaad+gaa8aabeaa aOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaG4maaaaaaaaaa@6D64@
    Figure 3. Evolution of the temperature weight with the plastic strain rate