/MAT/LAW64 (UGINE_ALZ)

Block Format Keyword This law describes the Ugine & Alz trip steel material. This material law can be used only with shell elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW64/mat_ID/unit_ID or /MAT/UGINE_ALZ/mat_ID/unit_ID
mat_title
ρ i
E ν Cp
D n Md V0 Vm
fct_ID0 fct_ID1 Fscale0 Fscale1 T0

Definition

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

unit_ID Unit identifier

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
E Initial Young's modulus.

(Real)

[ Pa ]
ν Poisson's ratio.

(Real)

Cp Specific heat capacity.

Default = 1030 (Real)

[ J kgK ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WcaaqaaiaabQeaaeaacaqGRbGaae4zaiabgwSixlaabUeaaaaacaGL BbGaayzxaaaaaa@3DB3@
D Material parameter 1.

(Real)

n Material parameter 2.

(Real)

Md Limit martensite transformation temperature.

(Real)

[ K ]
V0 Material parameter.

(Real)

Vm Constant martensite fraction for second yield stress function 0 < Vm ≤ 1.

(Real)

fct_ID0 Yield stress function identifier for 0 martensite fraction.

(Integer)

fct_ID1 Yield stress function identifier for Vm martensite fraction.

(Integer)

Fscale0 Scale factor for yield function for fct_ID0.

(Real)

[ Pa ]
Fscale1 Scale factor for yield function for fct_ID1.

(Real)

[ Pa ]
T0 Initial temperature.

(Real)

[ K ]

Example (Steel)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW64/1/1
Steel
#              RHO_I
              7.8E-9                   
#                  E                  Nu                  Cp
              210000                  .3           460000000
#                  D                   n                  Md                  V0                  Vm
                   4                 3.5                 356                  .2                  .6
# func_ID0  func_ID1             Fscale0             Fscale1                  T0
         1         2                   1                   1                 323
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
function_1
#                  X                   Y
                   0                 250                                                            
                .001                 350                                                            
                  .5                1100                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
function_2
#                  X                   Y
                   0                 930                                                            
                .001                1000                                                            
                  .5                1500                                                            
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. Martensite fraction:
    V m ( ε p , T ) = V m max ( T ) ( 1 e ( D ε p ) n )
    V m max ( T ) = V 0 Ln ( M d T + 1 )

    if

    T < M d
    V m max ( T ) = 0

    if

    T > M d

  2. Mechanical behavior:

    The yield plastic stress is computed by linear interpolation between two curves fct_ID1 and fct_ID0.

  3. The temperature is computed assuming the adiabatic condition (by default the condition is isothermal with Cp = 1030):
    T = T 0 + E int ρ C p ( Volume )

    Where, Eint is the internal energy of the element.