/MAT/LAW79 (JOHN_HOLM)

Block Format Keyword This material law describes the behavior of brittle materials, such as ceramics and glass. The implementation is the second Johnson-Holmquist model: JH-2.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW79/mat_ID/unit_ID or /MAT/JOHN_HOLM/mat_ID/unit_ID
mat_title
ρ i ρ 0            
G              
a b m n  
c ε ˙ 0 σ f max * Fcut    
T HEL PHEL        
D1 D2   IDEL ε p m a x    
K1 K2 K3 β    

Definition

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
ρ 0 Reference density used in E.O.S (equation of state).

Default = ρ 0 = ρ i (Real)

[ kg m 3 ]
G Shear modulus

(Real)

[ Pa ]
a Intact normalized strength constant. 1

(Real)

 
b Fractured normalized strength constant. 1

(Real)

 
m Fractured strength pressure exponent. 1

(Real)

 
n Intact strength pressure exponent. 1

(Real)

 
c Strain rate coefficient.
= 0 (Default)
No strain rate effect.

(Real)

 
ε ˙ 0 Reference strain rate.

Usually = 1 (Real)

[ 1 s ]
σ f max * Maximum normalized fractured strength.

Default = 1030 (Real)

 
Fcut Cutoff frequency for strain rate filtering.
= 0
No strain rate filtering.

(Real)

[Hz]
T Maximum pressure tensile strength.

Default = 1030 (Real)

[ Pa ]
HEL Hugoniot elastic limit.

(Real)

[ Pa ]
PHEL Pressure at Hugoniot elastic limit.

(Real)

[ Pa ]
D1 Damage constant. 2

(Real)

 
D2 Damage exponent. 2

(Real)

 
IDEL Element deletion flag.
= 0 (Default)
No element deletion.
= 1
Tensile failure when P * + T * < 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaGGQaaaaOGaey4kaSIaamivamaaCaaaleqabaGaaiOk aaaakiabgYda8iaaicdaaaa@3C74@ .
= 2
Failure when critical plastic strain is reached ε p > ε p max MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiCaaqabaGccqGH+aGpcqaH1oqzdaqhaaWcbaGaamiC aaqaaiGac2gacaGGHbGaaiiEaaaaaaa@3FD3@ .
= 3
Failure when D = 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey ypa0JaaGymaaaa@38E6@ .

(Integer)

 
ε p m a x Critical plastic strain for element deletion.

Default = 10 20 (Real)

 
K1 Bulk modulus.

(Real)

[ Pa ]
K2 Pressure coefficient. 3

(Real)

[ Pa ]
K3 Pressure coefficient. 3

(Real)

[ Pa ]
β Bulking pressure coefficient 0 < β < 1 .

(Real)

 

Input Example

  B4C [2] Al2O3 [1]
ρ 0 [ kg m 3 ] 2510 3700
G [GPA] 197 90
a 0.927 0.93
b 0.70 0.31
m 0.85 0.6
n 0.67 0.6
c 0.005 0
σ f max * 0.2 -
T [GPA] 0.26 0.2
HEL [GPA] 19.0 2.8
PHEL [GPA] 8.71 1.46
D1 0.001 0.005
D2 0.5 1
K1 [GPA] 233 131
K2 [GPA] -593 0
K3 [GPA] 2800 0
β 1 1

Example (AL2O3)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                   g                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW79/1/1
Al2O3
#              RHO_I               RHO_0              
               .0037                   0                   
#                  G
               90160
#                  a                   b                   m                   n
                 .93                   0                   0                  .6
#                  c                EPS0          SIGMA_FMAX
                   0                .001               1E-30
#                  T                 HEL                PHEL
                 200                2790                1460
#                 D1                  D2                IDEL             EPS_MAX
                   0                   0                   1
#                 K1                  K2                  K3                BETA
              130950                   0                   0                   1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Example (B4C)

/UNIT/1
units_for_example_B4C
                  Mg                  mm                   s                  
/MAT/LAW79/1/1
B4C
#              RHO_I               RHO_0              
            2.510E-9                   0                   
#                  G
              197000
#                  a                   b                   m                   n
               0.927                0.70                0.85                0.67
#                  c                EPS0          SIGMA_FMAX                FCUT
               0.005                 1.0               200.0             10000.0   
#                  T                 HEL                PHEL
                 260               19000                8710
#                 D1                  D2                IDEL             EPS_MAX
               0.001                 0.5                   2                0.15
#                 K1                  K2                  K3                BETA
              233000             -593000             2800000                   1

Comments

  1. The equation describing the normalized equivalent stress is:(1)
    σ * = ( 1 D ) σ i * + D σ f *
    with the equivalent stress of the intact material:(2)
    σ i * = a ( P * + T * ) n ( 1 + c ln ε ˙ ε ˙ 0 )
    and the equivalent stress of the failed material:(3)
    σ f * = b ( P * ) m ( 1 + c ln ε ˙ ε ˙ 0 ) < σ f max *
    The stresses are normalized to the stress at the Hugoniot elastic limit:(4)
    σ HEL = 3 2 ( HEL P HEL )

    σ * = σ σ HEL and pressure are normalized to PHEL:

    P * = P P H E L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaGGQaaaaOGaeyypa0ZaaSaaaeaacaWGqbaabaGaamiu amaaBaaaleaacaWGibGaamyraiaadYeaaeqaaaaaaaa@3D6D@ and T * = T P H E L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubWaaW baaSqabeaacaGGQaaaaOGaeyypa0ZaaSaaaeaacaWGubaabaGaamiu amaaBaaaleaacaWGibGaamyraiaadYeaaeqaaaaaaaa@3D74@

  2. If damage parameters are not specified ( D 1 = D 2 = 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaigdaaeqaaOGaeyypa0JaamiramaaBaaaleaacaaIYaaa beaakiabg2da9iaaicdaaaa@3C97@ ), plastic strain evolution is not computed and an instant failure is obtained when the element behavior reaches the elastic limit. Otherwise, if damage parameters are mentioned, the evolution of plastic strain is computed and the accumulated damage is:(5)
    D = Δ ε f p ε f p
    where, the plastic strain to failure is:(6)
    ε f p = D 1 ( P * + T * ) D 2
    The maximum pressure tensile strength is decreased during damage as follows:(7)
    P * = ( 1 D ) T * MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaGGQaaaaOGaeyypa0JaeyOeI0IaaiikaiaaigdacqGH sislcaWGebGaaiykaiaadsfadaahaaWcbeqaaiaacQcaaaaaaa@3F87@

    This equation is not used when IDEL = 1.

  3. The equation of state is: (8)
    P = K 1 μ P = K 1 μ + K 2 μ 2 + K 3 μ 3  in tension  in compression MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGabaabae qabaGaamiuaiabg2da9iaadUeadaWgaaWcbaGaaGymaaqabaGccqaH 8oqBaeaacaWGqbGaeyypa0Jaam4samaaBaaaleaacaaIXaaabeaaki abeY7aTjabgUcaRiaadUeadaWgaaWcbaGaaGOmaaqabaGccqaH8oqB daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGlbWaaSbaaSqaaiaaio daaeqaaOGaeqiVd02aaWbaaSqabeaacaaIZaaaaaaakiaawUhaauaa beqaciaaaeaacaqGGaGaaeyAaiaab6gaaeaacaqG0bGaaeyzaiaab6 gacaqGZbGaaeyAaiaab+gacaqGUbaabaGaaeiiaiaabMgacaqGUbaa baGaae4yaiaab+gacaqGTbGaaeiCaiaabkhacaqGLbGaae4Caiaabo hacaqGPbGaae4Baiaab6gaaaaaaa@62B4@
    Where, (9)
    μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaaleaacaaIWaaa beaaaaGccqGHsislcaaIXaaaaa@3F40@
    When damage starts, a bulking pressure increment Δ P is computed as a function of the elastic energy loss Δ U converted into potential hydrostatic energy:(10)
    Δ P t + Δ t = K 1 μ + ( K 1 μ + Δ P t ) 2 + 2 β K 1 Δ U

    Where, Δ U = U D U D n + 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WGvbGaeyypa0JaamyvamaabmaabaGaamiraaGaayjkaiaawMcaaiab gkHiTiaadwfadaqadaqaaiaadseadaWgaaWcbaGaamOBaiabgUcaRi aaigdaaeqaaaGccaGLOaGaayzkaaaaaa@43AD@ with U D = σ 6 G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGvbWaae WaaeaacaWGebaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqaHdpWC aeaacaaI2aGaam4raaaaaaa@3DED@ .

    This increment is then added to the equation of state:(11)
    Δ P t + Δ t = P t + Δ P t + Δ t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WGqbWaaSbaaSqaaiaadshacqGHRaWkcqqHuoarcaWG0baabeaakiab g2da9iaadcfadaWgaaWcbaGaamiDaaqabaGccqGHRaWkcqqHuoarca WGqbWaaSbaaSqaaiaadshacqGHRaWkcqqHuoarcaWG0baabeaaaaa@4794@
  4. Time history and animation output is available using these USRi variables:
    • USR1: Bulking Pressure Δ P
    • USR2: Old Yield Stress
  5. Strain rate filtering can be used and activated when a cutoff frequency Fcut for filtering is defined.
1 An improved computational constitutive model for brittle materials, G.R. Johnson, T.J. Holmquist, American Institute of Physics, 1994.
2 Response of boron carbide subjected to large strains, high strain rates, and high pressures G.R. Johnson, T.J. Holmquist, Journal of Applied Physics, Volume 85, #12, June 1999.