Hydrodynamic Lubrication Model

The Hydrodynamic Lubrication contact model simulates the effect of short-range hydrodynamic forces on particles as though they were saturated in a fluid.

The model integrates the work of three studies (see References and Bibliography), resulting in a model that may be used for both Particle-Particle and Particle-Geometry contacts, with the assumption that the system is fully saturated, and no fluid free-surface is involved.

The model was developed to capture important macro-mechanical phenomena, such as strain-rate dependency and shear thickening, in dense granular suspensions, under shear and extensional flow. One of the key underlying assumptions for a dense suspension is that the particular volume fraction is high (φ > 0.45), which naturally leads to narrow gaps between the particles. This leads to a further assumption that the fluid flow in these gaps is laminar, meaning the model is most applicable in low-inertia systems and not in systems with turbulent fluid.

The model is a purely viscous model and is not applicable to static conditions. This model has been used to simulate shear and extensional flow in granular dense suspensions, though it may have a wider applicability.

Note: This model does not explicitly model the fluid, but its impact on particle behavior.

Calculating Particle-Particle Force and Torque

For particle-particle contacts, the model uses the theory as outlined in the work of Cheal & Ness (2018). In Figure 1, for two particles p1 and p2 with linear velocities U1 and U2, rotating at angular velocities Ω1 and Ω2, with center-center vector d, pointing from p2 to p1, with corresponding unit normal n=d/|d|, the force F and torque Γ acting on p1 are defined as:

F μ = ( X 11 A n n + Y 11 A ( I n n ) ) ( U 2 U 1 ) + Y 11 B ( Ω 1 × n ) + Y 21 B ( Ω 2 × n ) Γ μ = Y 11 B ( U 2 U 1 ) × n ( I n n ) ( Y 11 C Ω 1 + Y 12 C Ω 2 ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbmaalaaabaGaamOraaqaaiabeY7aTbaacqGH9aqpcaGGOaGa amiwamaaDaaaleaacaaIXaGaaGymaaqaaiaadgeaaaGccaWGUbGaey 4LIqSaamOBaiabgUcaRiaadMfadaqhaaWcbaGaaGymaiaaigdaaeaa caWGbbaaaOGaaiikaiaadMeacqGHsislcaWGUbGaey4LIqSaamOBai aacMcacaGGPaGaaiikaiaadwfadaWgaaWcbaGaaGOmaaqabaGccqGH sislcaWGvbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiaadM fadaqhaaWcbaGaaGymaiaaigdaaeaacaWGcbaaaOGaaiikaiabfM6a xnaaBaaaleaacaaIXaaabeaakiabgEna0kaad6gacaGGPaGaey4kaS IaamywamaaDaaaleaacaaIYaGaaGymaaqaaiaadkeaaaGccaGGOaGa euyQdC1aaSbaaSqaaiaaikdaaeqaaOGaey41aqRaamOBaiaacMcaae aadaWcaaqaaiabfo5ahbqaaiabeY7aTbaacqGH9aqpcaWGzbWaa0ba aSqaaiaaigdacaaIXaaabaGaamOqaaaakiaacIcacaWGvbWaaSbaaS qaaiaaikdaaeqaaOGaeyOeI0IaamyvamaaBaaaleaacaaIXaaabeaa kiaacMcacqGHxdaTcaWGUbGaeyOeI0IaaiikaiaadMeacqGHsislca WGUbGaey4LIqSaamOBaiaacMcacaGGOaGaamywamaaDaaaleaacaaI XaGaaGymaaqaaiaadoeaaaGccqqHPoWvdaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWGzbWaa0baaSqaaiaaigdacaaIYaaabaGaam4qaaaa kiabfM6axnaaBaaaleaacaaIYaaabeaakiaacMcaaaaa@8FCA@

where ⊗ is the outer product,  μ is the viscosity of the fluid, and the remaining coefficients are defined as:

X 11 A = 6 π r 1 ( 2 β 2 ( 1 + β ) 3 1 ξ + β ( 1 + 7 β + β 2 ) 5 ( 1 + β ) 3 ln ( 1 ξ ) ) Y 11 A = 6 π r 1 ( 4 β ( 2 + β + 2 β 2 ) 15 ( 1 + β ) 3 l n ( 1 ξ ) ) Y 11 B = 4 π r 1 2 ( β ( 4 + β ) 5 ( 1 + β ) 2 l n ( 1 ξ ) ) Y 21 B = 4 π r 2 2 ( β 1 ( 4 + β 1 ) 5 ( 1 + β 1 ) 2 ln ( 1 ξ ) ) Y 11 C = 8 π r 1 3 ( 2 β 5 ( 1 + β ) l n ( 1 ξ ) ) Y 12 C = 8 π r 1 3 ( β 10 ( 1 + β ) l n ( 1 ξ ) ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaadIfadaqhaaWcbaGaaGymaiaaigdaaeaacaWGbbaaaOGa eyypa0JaaGOnaiabec8aWjaadkhadaWgaaWcbaGaaGymaaqabaGcca GGOaWaaSaaaeaacaaIYaGaeqOSdi2aaWbaaSqabeaacaaIYaaaaaGc baGaaiikaiaaigdacqGHRaWkcqaHYoGycaGGPaWaaWbaaSqabeaaca aIZaaaaaaakmaalaaabaGaaGymaaqaaiabe67a4baacqGHRaWkdaWc aaqaaiabek7aIjaacIcacaaIXaGaey4kaSIaaG4naiabek7aIjabgU caRiabek7aInaaCaaaleqabaGaaGOmaaaakiaacMcaaeaacaaI1aGa aiikaiaaigdacqGHRaWkcqaHYoGycaGGPaWaaWbaaSqabeaacaaIZa aaaaaakiGacYgacaGGUbGaaiikamaalaaabaGaaGymaaqaaiabe67a 4baacaGGPaGaaiykaaqaaiaadMfapaWaaSbaaSqaa8qacaaIXaGaaG ymaaWdaeqaaOWaaWbaaSqabeaapeGaamyqaaaakiabg2da9iaaiAda cqaHapaCcaWGYbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacI cadaWcaaqaaiaaisdacqaHYoGycaGGOaGaaGOmaiabgUcaRiabek7a IjabgUcaRiaaikdacqaHYoGypaWaaWbaaSqabeaapeGaaGOmaaaaki aacMcaaeaacaaIXaGaaGynaiaacIcacaaIXaGaey4kaSIaeqOSdiMa aiyka8aadaahaaWcbeqaa8qacaaIZaaaaaaakiaadYgacaWGUbGaai ikamaalaaabaGaaGymaaqaaiabe67a4baacaGGPaGaaiykaaqaaiaa dMfapaWaaSbaaSqaa8qacaaIXaGaaGymaaWdaeqaaOWaaWbaaSqabe aapeGaamOqaaaakiabg2da9iabgkHiTiaaisdacqaHapaCcaWGYbWd amaaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiaacIcadaWcaa qaaiabek7aIjaacIcacaaI0aGaey4kaSIaeqOSdiMaaiykaaqaaiaa iwdacaGGOaGaaGymaiabgUcaRiabek7aIjaacMcapaWaaWbaaSqabe aapeGaaGOmaaaaaaGccaWGSbGaamOBaiaacIcadaWcaaqaaiaaigda aeaacqaH+oaEaaGaaiykaiaacMcaaeaacaWGzbWdamaaBaaaleaape GaaGOmaiaaigdaa8aabeaakmaaCaaaleqabaWdbiaadkeaaaGccqGH 9aqpcqGHsislcaaI0aGaeqiWdaNaamOCa8aadaqhaaWcbaWdbiaaik daa8aabaWdbiaaikdaaaGcpaGaaiikamaalaaabaGaeqOSdi2aaWba aSqabeaacqGHsislcaaIXaaaaOGaaiikaiaaisdacqGHRaWkcqaHYo GydaahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaaabaGaaGynaiaa cIcacaaIXaGaey4kaSIaeqOSdi2aaWbaaSqabeaacqGHsislcaaIXa aaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaaGcciGGSbGaaiOBaiaa cIcadaWcaaqaaiaaigdaaeaacqaH+oaEaaGaaiykaiaacMcaaeaape Gaamywa8aadaWgaaWcbaWdbiaaigdacaaIXaaapaqabaGcdaahaaWc beqaa8qacaWGdbaaaOGaeyypa0JaaGioaiabec8aWjaadkhapaWaa0 baaSqaa8qacaaIXaaapaqaa8qacaaIZaaaaOGaaiikamaalaaabaGa aGOmaiabek7aIbqaaiaaiwdacaGGOaGaaGymaiabgUcaRiabek7aIj aacMcaaaGaamiBaiaad6gacaGGOaWaaSaaaeaacaaIXaaabaGaeqOV dGhaaiaacMcacaGGPaaabaGaamywa8aadaWgaaWcbaWdbiaaigdaca aIYaaapaqabaGcdaahaaWcbeqaa8qacaWGdbaaaOGaeyypa0JaaGio aiabec8aWjaadkhapaWaa0baaSqaa8qacaaIXaaapaqaa8qacaaIZa aaaOGaaiikamaalaaabaGaeqOSdigabaGaaGymaiaaicdacaGGOaGa aGymaiabgUcaRiabek7aIjaacMcaaaGaamiBaiaad6gacaGGOaWaaS aaaeaacaaIXaaabaGaeqOVdGhaaiaacMcacaGGPaaaaaa@FBD5@

where

ξ = 2 h r 1 + r 2 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaey ypa0ZaaSaaaeaacaaIYaGaamiAaaqaaiaadkhadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWGYbWaaSbaaSqaaiaaikdaaeqaaaaaaaa@3F20@

h = d ( r 1 + r 2 ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabg2 da9maaemaabaGaamizaaGaay5bSlaawIa7aiabgkHiTiaacIcacaWG YbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOCamaaBaaaleaaca aIYaaabeaakiaacMcaaaa@42EC@

As mentioned in Cheal & Ness (2018) , the model is only intended to capture ‘short range contributions’. Therefore, interactions are only considered for an additional hydrodynamic force if they satisfy the following outer cutoff condition: 

h h o u t e r r min MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgs MiJkaadIgadaWgaaWcbaGaam4BaiaadwhacaWG0bGaamyzaiaadkha aeqaaOGaaGPaVlaadkhadaWgaaWcbaGaciyBaiaacMgacaGGUbaabe aaaaa@4402@

where rmin is the smallest of the two particle radii: 

r min = min ( r 1 , r 2 ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyypa0JaciyBaiaacMga caGGUbGaaiikaiaadkhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaam OCamaaBaaaleaacaaIYaaabeaakiaacMcaaaa@43A6@

In addition to this condition, an additional inner cutoff condition is imposed so that the lubrication forces and torques are calculated down to a minimum separation distance of hinner rmin.

For contacts that have h < hinner rmin, the following is applied:

h = h i n n e r r min MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabg2 da9iaadIgadaWgaaWcbaGaamyAaiaad6gacaWGUbGaamyzaiaadkha aeqaaOGaaGPaVlaadkhadaWgaaWcbaGaciyBaiaacMgacaGGUbaabe aaaaa@4340@

This means that hydrodynamic forces and torques are only calculated in the range:

h inner r min h h outer r min MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGPbGaamOBaiaad6gacaWGLbGaamOCaaqabaGccaaMc8Ua amOCamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyizImQaam iAaiabgsMiJkaadIgadaWgaaWcbaGaam4BaiaadwhacaWG0bGaamyz aiaadkhaaeqaaOGaaGPaVlaadkhadaWgaaWcbaGaciyBaiaacMgaca GGUbaabeaaaaa@5119@

But, these forces and torques are applied for all h h o u t e r r min MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgs MiJkaadIgadaWgaaWcbaGaam4BaiaadwhacaWG0bGaamyzaiaadkha aeqaaOGaaGPaVlaadkhadaWgaaWcbaGaciyBaiaacMgacaGGUbaabe aaaaa@4402@

The default values are hinner = 0.001 and hinner = 0.05. This additional condition, and default values, are employed based on the approach of Cabiscol et al. (2021) , where the value of hinner = 0.001 was selected to reflect the asphericity/roughness of the beads used in their experiments. This inner cutoff value should be adjusted according to the surface roughness of the material being modeled.
Figure 1. Schematic for two particles of radius r_1 and r_2, with linear velocities U_1 and U_2, rotating at Ω_1 and Ω_2, with center-center distance d, a distance h apart, approaching each other.


Calculate Particle-Geometry Force and Torque

The works of two sets of authors are used for resolving Particle-Geometry contacts - one for calculating the normal force component (Goddard et al. (2020)) and the other for calculating the tangential force and torque components (O'Neil & Stewartson (1967)). All Particle-Geometry contact models follow the same cutoff implementation as the Particle-Particle model, using the approach of Cheal & Ness (2018) .

Normal Force

There are two possible approaches for the calculation of the normal force, both outlined in Goddard et al. (2020). One follows an analytical approach, henceforth referred to as Goddardlog, and the other follows a numerical approach, henceforth referred to as Goddardsum.

For Goddardlog, following the approach of Goddard et al. (2020), for a particle of radius r1 approaching a Geometry element with an assumed radius r2, that is very large, the ratio of their radii is defined as:

β = r 2 r 1 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaey ypa0ZaaSaaaeaacaWGYbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOC amaaBaaaleaacaaIXaaabeaaaaaaaa@3C73@

The gap between the particle and Geometry is termed ε, which is non-dimensionalized by the particle radius as shown in the following figure.

The non-dimensional normal force on the particle as it approaches the Geometry in the normal direction is then defined as:

F n * = ( 2 β 2 ) ε ( 1 + β ) 2 2 β ( 1 + 7 β + β 2 ) 5 ( 1 + β ) 3 l n ( ε ) + K 2 ( β ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbWdamaaDaaaleaapeGaamOBaaWdaeaapeGaaiOkaaaakiab g2da9maalaaabaGaaiikaiaaikdacqaHYoGypaWaaWbaaSqabeaape GaaGOmaaaakiaacMcaaeaacqaH1oqzcaGGOaGaaGymaiabgUcaRiab ek7aIjaacMcapaWaaWbaaSqabeaapeGaaGOmaaaaaaGccqGHsislpa WaaSaaaeaapeGaaGOmaiabek7aIjaacIcacaaIXaGaey4kaSIaaG4n aiabek7aIjabgUcaRiabek7aI9aadaahaaWcbeqaa8qacaaIYaaaaO GaaiykaaWdaeaapeGaaGynaiaacIcacaaIXaGaey4kaSIaeqOSdiMa aiyka8aadaahaaWcbeqaa8qacaaIZaaaaaaakiaadYgacaWGUbGaai ikaiabew7aLjaacMcacqGHRaWkcaWGlbWaaSbaaSqaaiaaikdaaeqa aOGaaiikaiabek7aIjaacMcaaaa@6394@

where higher order terms have been ignored. K2 has been calculated as described in equation (B21) in the Appendix of Goddard et al in References and Bibliography. As the calculation is complex, steps for calculation are omitted here. See the original paper for its calculation.

Considering that the radius of the Geometry element is assumed to be quite large, the resulting force experienced by the particle after re-dimensionalization with the typical drag scale 6πμUr1 is defined as:

F n = 6 π μ U r 1 ( 2 ε 2 5 ln ( ε ) + K 2 ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGUbaabeaakiabg2da9iaaiAdacqaHapaCcqaH8oqBcaWG vbGaamOCamaaBaaaleaacaaIXaaabeaakiaacIcadaWcaaqaaiaaik daaeaacqaH1oqzaaGaeyOeI0YaaSaaaeaacaaIYaaabaGaaGynaaaa ciGGSbGaaiOBaiaacIcacqaH1oqzcaGGPaGaey4kaSIaam4samaaBa aaleaacaaIYaaabeaakiaacMcaaaa@4DB0@

where 2U is the relative approach velocity between the particle and Geometry and μ is the fluid viscosity.
Figure 2. Schematic of a Particle of radius r1 traveling at a velocity U normally towards a Geometry of radius r2, which is moving at a velocity U towards the particle, with a non-dimensional separation distance of ε.


Using the definitions of ε, r1, r2, U, and μ as mentioned above, for the approach of Goddardsum, also outlined in Goddard et al. (2020), the dimensional normal force on the particle as it approaches the Geometry in the normal direction is calculated by:

F n = 2 c π μ u n = 1 ( 2 n + 1 ) ( a n + b n + c n + d n ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGUbaabeaakiabg2da9iabgkHiTmaakaaabaGaaGOmaaWc beaakiaadogacqaHapaCcqaH8oqBcaWG1bWaaabCaeaacaGGOaGaaG Omaiaad6gacqGHRaWkcaaIXaGaaiykaiaacIcacaWGHbWaaSbaaSqa aiaad6gaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaWGUbaabeaaki abgUcaRiaadogadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWGKbWa aSbaaSqaaiaad6gaaeqaaOGaaiykaaWcbaGaamOBaiabg2da9iaaig daaeaacqGHEisPa0GaeyyeIuoaaaa@575F@

where c > 0 is a geometrical constant, defined as follows, and an, bn, cn, dn (η) are series coefficients, dependent upon η, defined as follows. The complete definition of these series coefficients are omitted for brevity though they are defined in Goddard et al. (2020). An equal and opposing force is applied to the Geometry.

The approach of Goddardsum uses spherical bipolar coordinates (η, ξ, θ) to represent both particle and Geometry as constant values of η, which conveniently represents two non-intersecting coaxial spheres, with centers in the Cartesian plane at (0, c coth(η)), and radii c | csch(η)|. Designating the distance from the center to center of element i to the origin O (taken to be the contact point) by di and its radius to be ri, the spherical bipolar ordinates that define the particle (element 1) and Geometry (element 2) are as follows:

cosh ( η 1 ) = d 1 r 1 , cosh ( η 2 ) = d 2 r 2 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaaiiAaiaacIcacqaH3oaAcaaIXaGaaiykaiabg2da9maa laaabaGaamizamaaBaaaleaacaaIXaaabeaaaOqaaiaadkhadaWgaa WcbaGaaGymaaqabaaaaOGaaiilaiGacogacaGGVbGaai4CaiaacIga caGGOaGaeq4TdGMaaGOmaiaacMcacqGH9aqpdaWcaaqaaiaadsgada WgaaWcbaGaaGOmaaqabaaakeaacaWGYbGaaGOmaaaaaaa@4F20@

Figure 3 provides a visual representation of this definition, which is not commonly used in DEM. For more information about the approach, see Goddard et al. (2020).
Figure 3. Schematic of a particle of radius r1 traveling at a velocity U normally towards a Geometry of radius r2, which is moving at a velocity U towards the particle, with center-center distance d, a dimensional separation distance of h and with β=r1/r2. Note that the Geometry radius is much larger than that depicted in the figure.


Tangential Force and Torque

Following the approach of O’Neil & Stewartson (1967), consider the scenario of a particle of radius r moving parallel to a Geometry. The non-dimensional gap between the particle and Geometry is termed ε, as outlined previously and shown in the following figure.

The tangential force exerted on the particle is then defined as:

F t = 6 π μ U r f MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWG0baabeaakiabg2da9iaaiAdacqaHapaCcqaH8oqBcaWG vbGaamOCaiaadAgaaaa@3FE4@

where

f = ( 8 15 + 64 375 ε ) ln ( 2 ε ) + 0.58461 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2 da9iaacIcadaWcaaqaaiaaiIdaaeaacaaIXaGaaGynaaaacqGHRaWk daWcaaqaaiaaiAdacaaI0aaabaGaaG4maiaaiEdacaaI1aaaaiabew 7aLjaacMcaciGGSbGaaiOBaiaacIcadaWcaaqaaiaaikdaaeaacqaH 1oqzaaGaaiykaiabgUcaRiaaicdacaGGUaGaaGynaiaaiIdacaaI0a GaaGOnaiaaigdaaaa@4D97@

and the higher order terms in ε have been ignored. An equal and opposite force is applied to the Geometry.

The torque applied is defined as:

T = 8 π μ U r 2 τ i MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubGaeyypa0JaaGioaiabec8aWjabeY7aTjaadwfacaWGYbWd amaaCaaaleqabaWdbiaaikdaaaGcpaGaeqiXdq3aaSbaaSqaa8qaca WGPbaapaqabaaaaa@4219@

where, for the particle:

τ i = ( 1 10 + 43 250 ε ) ln ( 2 ε ) 0.26277 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaiikamaalaaabaGaaGymaaqa aiaaigdacaaIWaaaaiabgUcaRmaalaaabaGaaGinaiaaiodaaeaaca aIYaGaaGynaiaaicdaaaGaeqyTduMaaiykaiGacYgacaGGUbGaaiik amaalaaabaGaaGOmaaqaaiabew7aLbaacaGGPaGaeyOeI0IaaGimai aac6cacaaIYaGaaGOnaiaaikdacaaI3aGaaG4naaaa@4F89@

and for the Geometry:

τ i = ( 1 10 + 43 250 ε ) ln ( 2 ε ) 0.26221 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadMgaaeqaaOGaeyypa0JaaiikamaalaaabaGaaGymaaqa aiaaigdacaaIWaaaaiabgUcaRmaalaaabaGaaGinaiaaiodaaeaaca aIYaGaaGynaiaaicdaaaGaeqyTduMaaiykaiGacYgacaGGUbGaaiik amaalaaabaGaaGOmaaqaaiabew7aLbaacaGGPaGaeyOeI0IaaGimai aac6cacaaIYaGaaGOnaiaaikdacaaIYaGaaGymaaaa@4F7E@

The higher order terms in ε have been ignored.
Figure 4. Schematic of a particle of radius r traveling at a velocity U parallel to a Geometry surface, with a non-dimensional separation distance of ε.


Cutoffs

The inner and outer cutoffs explained previously for Particle-Particle contacts (and in Cabiscol et al. (2021) ) are also utilized for Particle-Geometry interactions, which means that the forces and torques outlined as follows are only ever calculated in the range:

h i n n e r r min h h o u t e r r min MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGPbGaamOBaiaad6gacaWGLbGaamOCaaqabaGccaaMc8Ua amOCamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyizImQaam iAaiabgsMiJkaadIgadaWgaaWcbaGaam4BaiaadwhacaWG0bGaamyz aiaadkhaaeqaaOGaaGPaVlaadkhadaWgaaWcbaGaciyBaiaacMgaca GGUbaabeaaaaa@5119@

but are applied for all h h o u t e r r min MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiabgs MiJkaadIgadaWgaaWcbaGaam4BaiaadwhacaWG0bGaamyzaiaadkha aeqaaOGaaGPaVlaadkhadaWgaaWcbaGaciyBaiaacMgacaGGUbaabe aaaaa@4402@ where hinner, houter, and rmin are as described previously.

Using the Hydrodynamic Lubrication Model

To use the Hydrodynamic Lubrication contact model, you must first add it to the Physics of a given EDEM simulation and then configure as required. 

The model will run without a contact radius specified for the particles, but to capture the full range of forces, you must specify a contact radius that will cover separations up to the specified outer cutoff . This means that the contact radius should be at least half of the outer cutoff distance on top of the physical radius. For example, with the default outer cutoff defined at 0.05 rmin , the contact radius should be at least 1.025 rmin , so that when two contact radii just touch, the center-to-center distance of the particles is 2.05 rmin. and hence the gap between the particles is 0.05 rmin.

Also, while you can enable the model while using polyhedral particles which currently do not have a contact radius, the full range of forces will not be applied correctly. You must proceed with caution when you want to use polyhedral particles with the model.

  1. In the Creator Tree, select Physics


  2. Select Particle to Particle and/or Particle to Geometry from the Interaction dropdown list.
  3. Click Edit Contact Chain at the lower section of the Physics panel.


  4. Under Plug-in Models, select the HydrodynamicLubrication checkbox.

  5. Click OK.

    The plug-in is displayed in the Model panel.

  6. Select the plug-in and click the icon in the lower-right section of the Physics panel to configure it.


  7. In the Hydrodynamic Lubrication Model Parameter Editor dialog box, specify values for Fluid Viscosity, Inner Cutoff, and Outer Cutoff.


    The Inner and Outer Cutoff values correspond to the non-dimensional values (by particle radius) between which the additional forces and torques are calculated. (The inner cutoff value should be adjusted according to the surface roughness of the material being modeled. (For more information about specifying cutoff values, see Cabiscol et al. (2021)).

    Note: Because one of the assumptions for the theory is that the particles are fully saturated with fluid, these values are applied to all particles in the simulation, rather than by type or interaction. As noted by Cabiscol et al, due to the omission of long-range fluid effects in the model, using the real fluid viscosity may not yield the same behavior as in the real-world. It has the same units and plays the same role as the real fluid viscosity, but it is recommended to perform a calibration on the fluid viscosity (as well as inner and outer cutoff values) to obtain the correct material behavior.
  8. Select the additional checkbox for the Particle-Geometry contact model to allow selecting the Goddardlog implementation for normal force.

    The most recommended default implementation is that of Goddardsum. You can select Goddardlog only if a simulation is already using the Hydrodynamic Lubrication model from EDEM v 2023.1, which only had the Goddardlog implementation, and to ensure consistency.

  9. After specifying the values, click OK.

Post Processing

Lubrication forces and torques are directly added to the particle characteristics Total Force and Total Torque. As a result, they are difficult to analyze separately from other contact forces and torques.