References and Bibliography
This section cites the contributions made by various authors and sources that have been used as reference material for EDEM, and the specifics of how they have been applied can be found in the individual contact model sections.
General DEM
Cundall P.A. and Strack O.D.L. (1979) A discrete numerical model for granular assemblies. Géotechnique, 29(1): p. 47-65. https://doi.org/10.1680/geot.1979.29.1.47
Goldsmith W. (1960) Impact: The Theory and Physical Behaviour of Colliding Solids. 1st ed. London: Arnold, E.https://doi.org/10.1017/S0368393100074861
Ning Z. (1995) Elasto-plastic Impact of Fine Particle and Fragmentation of Small Agglomerates. University of Aston in Birmingham.
Ning Z. et al. (1997) Effect of particle size and bond strength in impact breakage of weak agglomerates. in Powders & grains 97. Durham, North Carolina.
Ning Z. et al. (1997) Distinct element simulation of impact breakage of lactose agglomerates. Advanced Powder Technology, 8(1): p. 15-37. https://doi.org/10.1016/S0921-8831(08)60477-X
Raji A.O. (1999) Discrete element modeling of the deformation of bulk agricultural particulates. School of Agriculture, Food and Rural Development. Newcastle University. http://theses.ncl.ac.uk/jspui/handle/10443/871
Zhang D. and Whiten W.J. (1996) The calculation of contact forces between particles using spring and damping models. Powder Technology, 88(1): p. 59-64. http://dx.doi.org/10.1016/0032-5910(96)03104-X
Mio H. et al. (2009) Speed-up of computing time for numerical analysis of particle charging process by using discrete element method. Chemical Engineering Science, 64(5): p. 1019-1026. http://dx.doi.org/10.1016/j.ces.2008.10.064
Tsuji Y. et al. (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 71(3): p. 239-250. http://dx.doi.org/10.1016/0032-5910(92)88030-L
Di Renzo A. and Di Maio F.P. (2004) Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chemical Engineering Science, 59(3): p. 525-541. http://dx.doi.org/10.1016/j.ces.2003.09.037
Hertz H. (1882) On the contact of elastic solids. Journal fur die Reine und Angewandte Mathematik, 1882(92): p. 156-171.
Mindlin R.D. (1949) Compliance of elastic bodies in contact. Journal of Applied Mechanics, 16: p. 259-268.https://doi.org/10.1115/1.4009973
Mindlin R.D. and Deresiewicz H. (1953) Elastic Spheres in Contact under Varying Oblique Force. ASME, Journal of Applied Mechanics, 20: p. 327-344. https://doi.org/10.1115/1.4010702
Sakaguchi H. et al. (1993) Plugging of the Flow of Granular Materials during the Discharge from a Silo. International Journal of Modern Physics B, 07(09n10): p. 1949-1963. https://doi.org/10.1142/S0217979293002705
Contact Models
Nassauer, B., Kuna, M. Contact forces of polyhedral particles in discrete element method. Granular Matter 15, 349–355 (2013). https://doi.org/10.1007/s10035-013-0417-9
Zhou Y.C. et al. (1999) Rolling friction in the dynamic simulation of sandpile formation. Physica A: Statistical Mechanics and its Applications, 269(2): p. 536-553. http://dx.doi.org/10.1016/S0378-4371(99)00183-1
Ai J. et al. (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technology, 206(3): p. 269-282. http://dx.doi.org/10.1016/j.powtec.2010.09.030
Johnson K.L. et al. (1971) Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 324(1558). https://doi.org/10.1098/rspa.1971.0141
Baran O. et al. (2009) DEM Simulation of a Schulze Ring Shear Tester. AIP Conference Proceedings. 1145(1). https://doi.org/10.1063/1.3179948
Gilabert F. et al. (2007) Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Physical review E, 75(1)
Thornton C. (2015) Granular Dynamics, Contact Mechanics and Particle System Simulations: A DEM Study. Vol. 24. Springer.
Jones R. (2003) From Single Particle AFM Studies of Adhesion and Friction to Bulk Flow: Forging the Links. Granular Matter, 4(4): p. 191-204. https://doi.org/10.1007/s10035-002-0122-6
Jones R. et al. (2004) Frictional forces between cohesive powder particles studied by AFM. Ultra microscopy, 100(1): p. 59-78. http://dx.doi.org/10.1016/j.ultramic.2004.01.009
Thakur S.C. et al. (2014) Micro mechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granular Matter, 16(3): p. 383-400. https://doi.org/10.1007/s10035-014-0506-4
Capece, M., Ho, R., Strong, J., & Gao, P. (2015). Prediction of powder flow performance using a multi-component granular Bond number. Powder Technology, 286, 561–571.
O'Sullivan, C. and Bray, J., 2004. Selecting a suitable Time Step for discrete element simulations that use the central difference time integration scheme. Engineering Computations, 21(2/3/4), pp.278-303.
Mitarai N. and Nori F. (2006) Wet granular materials. Advances in Physics, 55(1-2): p. 1-45.https://doi.org/10.1080/00018730600626065
Govender, N., Wilke, D. N., Pizette, P., & Abriak, N. E. (2018). A study of shape non- uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code. Applied Mathematics and Computation, 319 , 318336.https://doi.org/10.1016/j.amc.2017.03.037
Govender, N., Wilke, D. N., Wu, C. Y., Tuzun, U., & Kureck, H. (2019). A numerical investigation into the effect of angular particle shape on blast furnace burden topography and percolation using a GPU solved discrete element model. Chemical Engineering Science, 204 , 926. https://doi.org/10.1016/j.ces.2019.03.077
Govender, Nicolin, Rajamani, Raj, Wilke, Daniel N, Wu, Chuan-Yu, Khinast, Johannes and Glasser, Benjamin J (2018) Effect of particle shape in grinding mills using a GPU based DEM code. Minerals Engineering, 129. pp. 71-84.
J. Chen, Discrete element method for 3D simulations of mechanical systems of nonspherical granular materials, PhD thesis, The University of Electro-Communications (2012).
Hertz-Mindlin with Bonding Model
Potyondy D.O. and Cundall P.A. (2004) A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8): p. 1329-1364. http://dx.doi.org/10.1016/j.ijrmms.2004.09.011
Hertz-Mindlin with Archard Wear Model
Archard J.F. (1953) Contact and Rubbing of Flat Surfaces. Journal of Applied Physics, 24(8): p. 981-988.https://doi.org/10.1063/1.1721448
Oka Wear Model
Oka , Y. I., Okamura, K., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation. Wear 259(1–6), 95–101. https://doi.org/10.1016/j.wear.2005.01.039
Oka, Y. I., & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage. Wear 259 (1–6), 102–109.https://doi.org/10.1016/j.wear.2005.01.040
Hertz-Mindlin with Heat Conduction Model
Chaudhuri B. et al. (2006) Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science, 61(19): p. 6348-6360. http://doi.org/10.1016/j.ces.2006.05.034
Hysteretic Spring Model
Walton O.R. and Braun R.L. (1986) Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology, 30(5): p. 949-980. https://doi.org/10.1122/1.549893
Walton O.R. and Braun R.L. (1986) Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mechanica, 63(1): p. 73-86. http://doi.org/10.1007/bf01182541
Walton O.R. (2006) (Linearized) Elastic-Plastic contact model. DEM Solutions Ltd. Edinburgh, UK.
Type C Rolling Friction Model
Ai, Jun & Chen, Jian-Fei & Rotter, J. & Ooi, J.. (2011). Assessment of rolling resistance models in discrete element simulations. Powder Technology. 206. 269-282. 10.1016/j.powtec.2010.09.030.
Electrostatics Model
Casper M.J. (1997) Physical chemistry of surfaces (3rd). Chapter5. Adamson A.W. and Gast A.P., Editors. John Wiley & Sons, Inc.
Hogue M.D. et al. (2008) Calculating the trajectories of triboelectrically charged particles using Discrete Element Modeling (DEM). Journal of Electrostatics, 66(1): p. 32-38. http://dx.doi.org/10.1016/j.elstat.2007.08.007
Tribocharging Model
Greason W.D. (2000) Investigation of a test methodology for triboelectrification. Journal of Electrostatics, 49(3): p. 245-256. http://dx.doi.org/10.1016/S0304-3886(00)00013-9
Tavares UFRJ Breakage Model
King R.P. (2001) 5 - Comminution operations, in Modeling and Simulation of Mineral Processing SystemsKing R.P., Editor. Butterworth-Heinemann: Oxford. p. 127-212.
Tavares L.M. and King R.P. (2002) Modeling of particle fracture by repeated impacts using continuum damage mechanics. Powder Technology 123(2): p. 138-146.
Tavares L.M. (2009) Analysis of particle fracture by repeated stressing as damage accumulation. Powder Technology 190(3): p. 327-339.
Tavares L.M. and de Carvalho R.M. (2012) Modeling ore degradation during handling using continuum damage mechanics. International Journal of Mineral Processing 112-113: p. 1-6.
de Carvalho R.M. and Tavares L.M. (2013) Predicting the effect of operating and design variables on breakage rates using the mechanistic ball mill model. Minerals Engineering 43-44: p. 91-101.
Cavalcanti P.P. et al. (2019) Surface breakage of fired iron ore pellets by impact. Powder Technology 342: p. 735-743.
Napier-Munn T.J. et al. (1996) Mineral comminution circuits: their operation and optimisation. JKMRC monograph series in mining and mineral processing. Vol. 2. Indooroopilly, Qld Australia.
Tavares L.M. (2007) Breakage of Single Particles: Quasi-Static, in Handbook of Powder Technology. Elsevier B.V.
Tavares L.M. and das Neves P.B. (2008) Microstructure of quarry rocks and relationships to particle breakage and crushing. International Journal of Mineral Processing 87(1): p. 28-41.
Saeidi F. et al. (2016) A phenomenological model of single particle breakage as a multi-stage process. Minerals Engineering 98: p. 90-100.
Sun C.T. and Jin Z.H. (2012) Chapter 2 - Griffith Theory of Fracture, in Fracture MechanicsSun C.T. and Jin Z.H., Editors. Academic Press: Boston. p. 11-24.
Tavares L.M. and Chagas S.A. (2020) A stochastic particle replacement strategy for simulating breakage in DEM. Powder Technology (in press).
King R.P. and Bourgeois F. (1993) Measurement of fracture energy during single-particle fracture. Minerals Engineering 6(4): p. 353-367.
Tavares L.M. and King R.P. (1998) Single-particle fracture under impact loading. International Journal of Mineral Processing 54(1): p. 1-28.
Barrios G. et al. (2015) DEM Simulation of Bed Particle Compression Using the Particle Replacement Model, in 2nd International Conference on Energy, Sustainability and Climate Change. Crete, Greece.
Bond F.C. (1946) Crushing Tests by Pressure and Impact. Mining Technology 169: p. 58-65.
The Linear Elastic Bonding Model
C. A. Labra (2012) Advances in the development of the discrete element method for excavation processes. Universitat Politècnica de Catalunya.
J. Rojek, C. Labra, O. Su, E. Oñate (2012) Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. International Journal of Solids and Structures 49, p.1497-1517.
Particle Body Forces
Chaudhuri B. et al. (2006) Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science, 61(19): p. 6348-6360. http://doi.org/10.1016/j.ces.2006.05.034
Norouzi H. et al. (2016) Coupled CFD-DEM modeling, formulation, implementation, and application to multiphase flows (1st). Chapter6. John Wiley & Sons, Inc.
Sommerfeld M and Laín S. (2012) Numerical calculation of pneumatic conveying in horizontal channels and pipes : Detailed analysis of conveying behaviour. International Journal of Multiphase Flow, 39: p. 105-120. https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.006
Morsi S. A. J and Alexander A. J. (1972) An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 55(2): p. 193-208. https://doi.org/10.1017/S0022112072001806
Schiller L and Naumann A. (1933) A drag coefficient correlation. Vdi Zeitung, 77: p. 318-320
Chhabra R. P. et al. (1999) Drag on non-spherical particles: an evaluation of available methods. Powder Technology, 101(3): p. 288-295. https://doi.org/10.1016/S0032-5910(98)00178-8
Powders Starter Pack
Carr R.L. (1965) Evaluating Flow Properties of Solids. Chemical Engineering Journal, 72(69)
Wells J.I. (1988) Pharmaceutical preformulation. Physicochemical Properties of Drug Substances, ed. Rubinstein M.M.E. Chichester: Ellis Horwood Limited. 209-214.
Marshall K. (1986) Compression and Consolidation of Powdered Solids, The Theory and Practise of Industrial Pharmacy(3rd). Lieberman H., Lachman, L., Editor. Lea & Febiger. https://doi.org/10.1002/jps.2600760125
World Health Organization (WHO). (2017) Bulk Density and Tapped Density Of Powders, The International Pharmacopoeia (4th).
Guerin E. et al. (1999) Rheological characterization of pharmaceutical powders using tap testing, shear cell and mercury porosimeter. International Journal of Pharmaceutics, 189(1): p. 91-103. https://doi.org/10.1016/S0378-5173(99)00243-4
Powders Database
ASTM D6393 / D6393M-21, Standard Test Method for Bulk Solids Characterization by Carr Indices, ASTM International, West Conshohocken, PA, 2021, www.astm.org
ASTM D6128-16, Standard Test Method for Shear Testing of Bulk Solids Using the Jenike Shear Tester, ASTM International, West Conshohocken, PA, 2016, www.astm.org
ASTM D6773-16, Standard Test Method for Bulk Solids Using Schulze Ring Shear Tester, ASTM International, West Conshohocken, PA, 2016, www.astm.org
Härtl, J., & Ooi, J. Y. (2011). Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments. Powder Technology, 212(1), 231–239.https://doi.org/10.1016/j.powtec.2011.05.022
Thakur, S. C., Morrissey, J. P., Sun, J., Chen, J. F., & Ooi, J. Y. (2014). Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granular Matter, 16(3), 383–400. https://doi.org/10.1007/s10035-014-0506-4
R. Freeman, Measuring the flow properties of consolidated, conditioned and aerated powders - A comparative study using a powder rheometer and a rotational shear cell, Powder Technol. 174 (2007) 25–33.https://doi.org/10.1016/j.powtec.2006.10.016.
EDEM 2021.2 Documentation
Thakur, S. C., Ooi, J. Y., & Ahmadian, H. (2016). Scaling of discrete element model parameters for cohesionless and cohesive solid. Powder Technology, 293, 130–137. https://doi.org/10.1016/j.powtec.2015.05.051
Wet Mixing
Krenzer, K., Mechtcherine, V., & Palzer, U. (2015). Simulating mixing processes with water addition using DEM – from bulk material to suspension.
Hydrodynamic Lubrication Model
O. Cheal & C. Ness, 2018, Rheology of dense granular suspensions under extensional flow, Journal of Rheology, vol 62, part 2, pp 501-512.
R. Cabiscol, T. Jansen, M. Marigo & C. Ness, 2021, Application of hydrodynamic lubrication in discrete element method (DEM) simulations of wet bead milling chambers, Powder Technology, vol 384, pp542-553.
B. D. Goddard, R. D. Mills-Williams & J. Sun, 2020, The singular hydrodynamic interactions between two spheres in Stokes flow, Physics of Fluids, vol 32, 062001.
M. E. O’Neil & K. Stewartson, 1967, On the slow motion of a sphere parallel to a nearby plane wall, Journal of Fluid Mechanics, vol. 27, part 4, pp 705-724.
Stress Calculation
J. Rojek, G.F. Karlis, L.J. Malinowski, G. Beer (2013), Setting up virgin stress conditions in discrete element models. Computers and Geotechnics 48: p. 228-248 https://doi.org/10.1016/j.compgeo.2012.07.009.