For Yamada-Sun, two criteria are implemented:

Where the ply failure is evaluated as below:

${\text{F}}_{\text{index}}=\frac{{\text{σ}}_{1}^{2}}{{\text{X}}^{2}}+\frac{{\text{τ}}_{12}^{2}}{{\text{S}}^{2}}$

being $X={X}_{T}$ or $X={X}_{C}$ if ${\sigma }_{1}\ge 0$ or ${\text{σ}}_{1}<0$.

### Syntax

YamandaSunFT(tensor,xt,xc,s,sets,plies,elems,parts,props,pool_name,layer_index,opt_str)

### Arguments

tensor
Stress table
xt
Allowable tensile stress in ply material direction 1
xc
Allowable compressive stress in ply material direction 1
s
Allowable in-plane shear stress
sets
Set table (D=NULL)
plies
Ply table (D=NULL)
elems
Element table (D)
parts
Part table (D)
props
Property table (D)
pool_name
Pool name (D=@current_pool)
layer_index
Layer index (D=@current_slice_index)
opt_str
This is an optional argument, which can passed if needed (D=option).

Where the ply failure is evaluated as below:

${\text{F}}_{\text{index}}=\mathrm{max}\left[\frac{{\text{σ}}_{1}^{2}}{{\text{X}}^{2}}+\frac{{\text{τ}}_{12}^{2}}{{\text{S}}^{2}},\frac{{\text{σ}}_{2}^{2}}{{\text{Y}}^{2}}+\frac{{\text{τ}}_{12}^{2}}{{\text{S}}^{2}}\right]$

being $X={X}_{T}$ or $X={X}_{C}$ if ${\sigma }_{1}\ge 0$ or ${\text{σ}}_{1}<0$ and the same for $Y$.

### Syntax

YamandaSun2DFT(tensor,xt,xc,yt,yc,s,sets,plies,elems,parts,props,pool_name,layer_index,opt_str)

### Arguments

tensor
Stress table
xt
Allowable tensile stress in ply material direction 1
xc
Allowable compressive stress in ply material direction 1
yt
Allowable tensile stress in ply material direction 2
yc
Allowable compressive stress in ply material direction 2
s
Allowable in-plane shear stress
sets
Set table (D=NULL)
plies
Ply table (D=NULL)
elems
Element table (D)
parts
Part table (D)
props
Property table (D)
pool_name
Pool name (D=@current_pool)
layer_index
Layer index (D=@current_slice_index)
opt_str
This is an optional argument, which can passed if needed (D=option).