Flow Meter Element

Description and Quick Guide

The Flow Meter element uses a change in area to produce a change in velocity and thus a change in static pressure. The static pressure can be measured by pressure taps and used to determine the flow rate in the tube. The Flow Meter element in Flow Simulator can account for the pressure drop through the device. The flow measurement is not the main purpose of this element since all Flow Simulator elements return a flow rate.

There are four types of flow meters that can be modeled with this element. You can choose different loss correlations (Cd) for each type.
  • Thin Orifice Plate
  • Venturi
  • Nozzle
  • Venturi-Nozzle

The orifice plate has the highest overall total pressure drop but it is popular due to its simplicity and low cost. The other meter types have much less total pressure drop but have a longer length and higher cost.

There are very specific flow and geometry guidelines for the flow meter (ref 1). The loss correlations are only valid if these guidelines are followed.

This element can be used for compressible gas or incompressible liquid. The compressible gas element does check for flow choking (Mach 1 in the vena-contracta) and limits the flow rate if choking occurs. This element does not consider rotation or elevation change.

Flow Meter Element Inputs

Table 1. Element Specific Input Variables
Index UI Name (.flo label) Description
1 Subtype

(SUBTYPE)

The type of flow meter.
  • Thin Orifice Plate
  • Venturi
  • Nozzle
  • Venturi-Nozzle
2 Cd Equation

(LOSS_OPTION)

The discharge coefficient equation. The options available depend on the Subtype.
  • 0: Specified Cd
  • 11: ISO
  • 12: Reader-Harris
  • 21: Cast
  • 22: Machined
  • 23: Welded
  • 31: ISA 1932
  • 32: Long Radius
  • 40: ISO
3 Cross-Section Shape

(CS_SHAPE)

The type of geometry inputs.
  • 1: Circular with Area Specified
  • 2: Circular with Diameter Specified
4 Pipe Geometry Option

(PIPE_GEOM_OPT)

Options for pipe geometry information.
  • 0: User Input
  • 1: Automatic

The automatic option uses the diameter of the elements attached to the flow meter element.

5 Throat Area

(THROAT_AREA)

Only used if CS_SHAPE = 1.

The minimum physical area of the flow meter. This is the orifice diameter for an orifice plate subtype (in^2).

6 Pipe Area

(PIPE_AREA)

Only used if CS_SHAPE = 1 and PIPE_GEOM_OPT = 0.

The pipe area (in^2).

7 Throat Diameter

(THROAT_DIA)

Only used if CS_SHAPE = 2.

The minimum physical diameter of the flow meter. This is the orifice diameter for an orifice plate subtype (in).

8 Pipe Diameter

(PIPE_DIA)

Only used if CS_SHAPE = 2 and PIPE_GEOM_OPT=0.

The pipe diameter (in).

9 Forward Flow Cd

(CD_FWD)

Only used if LOSS_OPTION = 0.

The user-specified discharge coefficient for forward flow.

10 Reverse Flow Cd

(CD_REV)

The user-specified discharge coefficient for reverse flow.

The flow is not typically reversed through a flow meter.

11 Portion of Ustrm Cham. Dyn. Head Lost

(DQ_IN)

Inlet dynamic head loss. Refer to the General solver theory sections for more details about this input.
12 Element Inlet Orientation: Tangential Angle

(THETA)

Angle (deg) between the element center line at the entrance of the element and the reference direction.

If the element is rotating or directly connected to one or more rotating elements, the reference direction is defined as parallel to the engine center line and the angle is the projected angle in the tangential direction. Otherwise, the reference direction is arbitrary but assumed to be the same as the reference direction for all other elements attached to the upstream chamber.

Theta for an element downstream of a plenum chamber has no impact on the solution except to set the default value of THETA_EX.

See also THETA_EX.

13 Element Inlet Orientation: Radial Angle

(PHI)

Angle (deg) between the element center line at the entrance of the element and the THETA direction (spherical coordinate system).

Phi for an element downstream of a plenum chamber has no impact on the solution except to set the default value of PHI_EX.

See also PHI_EX.

14 Element Exit Orientation: Tangential Angle

(THETA_EXIT)

Angle (deg) between the element exit center line and the reference direction.

THETA_EX is an optional variable to be used if the orientation of the element exit differs from that of the element inlet.

The default value (THETA_EX = -999) results in the assumption that THETA_EX = THETA.

Other values are interpreted in the manner presented in the description of THETA.

15 Element Exit Orientation: Radial Angle

(PHI_EXIT)

Angle (deg) between the element exit center line and the THETA_EX direction.

PHI_EX is an optional variable to be used if the orientation of the element exit differs from that of the element inlet.

The default value (PHI_EX = -999) results in the assumption that PHI_EX = PHI.

Other values are interpreted in the manner presented in the description of PHI.

16

17

18

Exit K Loss:

Axial (K_EXIT_Z)

Tangential (K_EXIT_U)

Radial (K_EXIT_R)

Head loss factors in the Z, U, and R directions based on the spherical coordinate system of theta and phi.

Z = the axial direction. (theta=0 and phi=0)

U = the tangential direction. (theta=90 and phi=0)

R = the radial direction. (theta=0 and phi=90)

Valid values of K_EXIT_i (i = Z, U, R) range from zero (default) to one.

The three loss factors reduce the corresponding three components of velocity exiting the element.

V a c t u a l   e x i t   i d i r = V n o l o s s   e x i t   i d i r * 1 K _ E X I T _ i d i r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbWdamaaBaaaleaapeGaamyyaiaadogacaWG0bGaamyDaiaa dggacaWGSbGaaiiOaiaadwgacaWG4bGaamyAaiaadshacaGGGcGaam yAaiaadsgacaWGPbGaamOCaaWdaeqaaOWdbiabg2da9iaadAfapaWa aSbaaSqaa8qacaWGUbGaam4BaiaadYgacaWGVbGaam4Caiaadohaca GGGcGaamyzaiaadIhacaWGPbGaamiDaiaacckacaWGPbGaamizaiaa dMgacaWGYbaapaqabaGcpeGaaiOkamaakaaapaqaa8qacaaIXaGaey OeI0Iaam4saiaac+facaWGfbGaamiwaiaadMeacaWGubGaai4xaiaa dMgacaWGKbGaamyAaiaadkhaaSqabaaaaa@64E4@

Default value provides no loss, K_EXIT_i=0.

19 Fluid Compressibility Mode

(FLUID_MODE)

Flow Meter Element Theory

The flow rate and Cd equations can be found in the references.
Flow Rate
m ˙ = C d * E * A r e a t h r o a t * 2 *   ρ u p * Δ P MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaacaWdbiabg2da9iaadoeacaWGKbGaaiOkaiaadwea caGGQaGaamyqaiaadkhacaWGLbGaamyya8aadaWgaaWcbaWdbiaads hacaWGObGaamOCaiaad+gacaWGHbGaamiDaaWdaeqaaOWdbiaacQca daGcaaWdaeaapeGaaGOmaiaacQcacaGGGcGaeqyWdi3damaaBaaale aapeGaamyDaiaadchaa8aabeaak8qacaGGQaGaeyiLdqKaamiuaaWc beaaaaa@5043@
for incompressible liquid
m ˙ = C d * Y * E * A r e a t h r o a t * 2 *   ρ u p * Δ P MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaacaWdbiabg2da9iaadoeacaWGKbGaaiOkaiaadMfa caGGQaGaamyraiaacQcacaWGbbGaamOCaiaadwgacaWGHbWdamaaBa aaleaapeGaamiDaiaadIgacaWGYbGaam4BaiaadggacaWG0baapaqa baGcpeGaaiOkamaakaaapaqaa8qacaaIYaGaaiOkaiaacckacqaHbp GCpaWaaSbaaSqaa8qacaWG1bGaamiCaaWdaeqaaOWdbiaacQcacqGH uoarcaWGqbaaleqaaaaa@51CF@
for compressible gas
Where:
C d = a c t u a l   m ˙ i d e a l   m ˙ = d i s c h a r g e   c o e f f i c i e n t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9maalaaapaqaa8qacaWGHbGaam4yaiaa dshacaWG1bGaamyyaiaadYgacaGGGcGabmyBa8aagaGaaaqaa8qaca WGPbGaamizaiaadwgacaWGHbGaamiBaiaacckaceWGTbWdayaacaaa a8qacqGH9aqpcaWGKbGaamyAaiaadohacaWGJbGaamiAaiaadggaca WGYbGaam4zaiaadwgacaGGGcGaam4yaiaad+gacaWGLbGaamOzaiaa dAgacaWGPbGaam4yaiaadMgacaWGLbGaamOBaiaadshaaaa@5C61@
E = 1 1 β 4 ,     β = D i a t h r o a t D i a p i p e   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbmaakaaa paqaa8qacaaIXaGaeyOeI0IaeqOSdi2damaaCaaaleqabaWdbiaais daaaaabeaaaaGccaGGSaGaaiiOaiaacckacaqGYoGaeyypa0ZaaSaa a8aabaWdbiaadseacaWGPbGaamyya8aadaWgaaWcbaWdbiaadshaca WGObGaamOCaiaad+gacaWGHbGaamiDaaWdaeqaaaGcbaWdbiaadsea caWGPbGaamyya8aadaWgaaWcbaWdbiaadchacaWGPbGaamiCaiaadw gaa8aabeaaaaGcpeGaaiiOaaaa@539A@
Y = e x p a n s i o n   f a c t o r   f o r   c o m p r e s s i b l e   g a s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbGaeyypa0JaamyzaiaadIhacaWGWbGaamyyaiaad6gacaWG ZbGaamyAaiaad+gacaWGUbGaaiiOaiaadAgacaWGHbGaam4yaiaads hacaWGVbGaamOCaiaacckacaWGMbGaam4BaiaadkhacaGGGcGaam4y aiaad+gacaWGTbGaamiCaiaadkhacaWGLbGaam4CaiaadohacaWGPb GaamOyaiaadYgacaWGLbGaaiiOaiaadEgacaWGHbGaam4Caaaa@5B8F@
ρ u p = f l u i d   d e n s i t y   u p s t r e a m   o f   p i p e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qacaWG1bGaamiCaaWdaeqaaOWdbiab g2da9iaadAgacaWGSbGaamyDaiaadMgacaWGKbGaaiiOaiaadsgaca WGLbGaamOBaiaadohacaWGPbGaamiDaiaadMhacaGGGcGaamyDaiaa dchacaWGZbGaamiDaiaadkhacaWGLbGaamyyaiaad2gacaGGGcGaam 4BaiaadAgacaGGGcGaamiCaiaadMgacaWGWbGaamyzaaaa@585B@
Δ P = P s t a t i c ,   u p P s t a t i c ,     v e n a c o n t r a c t a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHuoarcaWGqbGaeyypa0Jaamiua8aadaWgaaWcbaWdbiaadoha caWG0bGaamyyaiaadshacaWGPbGaam4yaiaacYcacaGGGcGaamyDai aadchaa8aabeaak8qacqGHsislcaWGqbWdamaaBaaaleaapeGaam4C aiaadshacaWGHbGaamiDaiaadMgacaWGJbGaaiilaiaacckacaGGGc GaamODaiaadwgacaWGUbGaamyyaiabgkHiTiaadogacaWGVbGaamOB aiaadshacaWGYbGaamyyaiaadogacaWG0bGaamyyaaWdaeqaaaaa@5BDC@
Static Pressure at the Vena-Contracta
Flow Simulator uses the upstream total pressure and downstream static pressure for flow calculations. The flow meter calculation uses the upstream static pressure and a vena-contracta static pressure. There will be a static pressure increase from the vena-contracta to the known downstream static pressure. The relationship between these pressures can be found from equation 2-9 in reference 1:
P s t a t i c ,   u p P s t a t i c ,     d o w n P s t a t i c ,   u p P s t a t i c ,     v e n a c o n t r a c t a = P s t a t i c ,   u p P s t a t i c ,     d o w n Δ P = 1 β 4 * 1 C d 2 C d * β 2 1 β 4 * 1 C d 2 + C d * β 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaamiua8aadaWgaaWcbaWdbiaadohacaWG0bGa amyyaiaadshacaWGPbGaam4yaiaacYcacaGGGcGaamyDaiaadchaa8 aabeaak8qacqGHsislcaWGqbWdamaaBaaaleaapeGaam4Caiaadsha caWGHbGaamiDaiaadMgacaWGJbGaaiilaiaacckacaGGGcGaamizai aad+gacaWG3bGaamOBaaWdaeqaaaGcbaWdbiaadcfapaWaaSbaaSqa a8qacaWGZbGaamiDaiaadggacaWG0bGaamyAaiaadogacaGGSaGaai iOaiaadwhacaWGWbaapaqabaGcpeGaeyOeI0Iaamiua8aadaWgaaWc baWdbiaadohacaWG0bGaamyyaiaadshacaWGPbGaam4yaiaacYcaca GGGcGaaiiOaiaadAhacaWGLbGaamOBaiaadggacqGHsislcaWGJbGa am4Baiaad6gacaWG0bGaamOCaiaadggacaWGJbGaamiDaiaadggaa8 aabeaaaaGcpeGaeyypa0ZaaSaaa8aabaWdbiaadcfapaWaaSbaaSqa a8qacaWGZbGaamiDaiaadggacaWG0bGaamyAaiaadogacaGGSaGaai iOaiaadwhacaWGWbaapaqabaGcpeGaeyOeI0Iaamiua8aadaWgaaWc baWdbiaadohacaWG0bGaamyyaiaadshacaWGPbGaam4yaiaacYcaca GGGcGaaiiOaiaadsgacaWGVbGaam4Daiaad6gaa8aabeaaaOqaa8qa cqqHuoarcaWGqbaaaiabg2da9maalaaapaqaa8qadaGcaaWdaeaape GaaGymaiabgkHiTiabek7aI9aadaahaaWcbeqaa8qacaaI0aaaaOGa aiOkamaabmaapaqaa8qacaaIXaGaeyOeI0Iaam4qaiaadsgapaWaaW baaSqabeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaWcbeaakiabgkHi TiaadoeacaWGKbGaaiOkaiabek7aI9aadaahaaWcbeqaa8qacaaIYa aaaaGcpaqaa8qadaGcaaWdaeaapeGaaGymaiabgkHiTiabek7aI9aa daahaaWcbeqaa8qacaaI0aaaaOGaaiOkamaabmaapaqaa8qacaaIXa GaeyOeI0Iaam4qaiaadsgapaWaaWbaaSqabeaapeGaaGOmaaaaaOGa ayjkaiaawMcaaaWcbeaakiabgUcaRiaadoeacaWGKbGaaiOkaiabek 7aI9aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@B2F9@
The Discharge Coefficient
Each type of flow meter has a unique empirically derived discharge coefficient. The equations used for each type are listed here.
Orifice Plate, ISO
This equation is in references 2 and 3 and is specifically for taps 1 diameter upstream and ½ diameter downstream of the orifice plate. Cd will be around 0.6
Cd=0.595+ 0.0312* β 2.1 0.184* β 8 +0.09* β 4 1 β 4 0.01685* β 3 +91.71* β 2.5 R e up 0.75 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9iaaicdacaGGUaGaaGynaiaaiMdacaaI 1aGaey4kaSIaaeiOaiaaicdacaGGUaGaaGimaiaaiodacaaIXaGaaG OmaiaabQcacqaHYoGypaWaaWbaaSqabeaapeGaaGOmaiaac6cacaaI XaaaaOGaeyOeI0IaaGimaiaac6cacaaIXaGaaGioaiaaisdacaqGQa GaeqOSdi2damaaCaaaleqabaWdbiaaiIdaaaGccqGHRaWkcaaIWaGa aiOlaiaaicdacaaI5aGaaeOkamaalaaapaqaa8qacqaHYoGypaWaaW baaSqabeaapeGaaGinaaaaaOWdaeaapeGaaGymaiabgkHiTiabek7a I9aadaahaaWcbeqaa8qacaaI0aaaaaaakiabgkHiTiaaicdacaGGUa GaaGimaiaaigdacaaI2aGaaGioaiaaiwdacaqGQaGaeqOSdi2damaa CaaaleqabaWdbiaaiodaaaGccqGHRaWkcaaI5aGaaGymaiaac6caca aI3aGaaGymaiaacQcadaWcaaWdaeaapeGaeqOSdi2damaaCaaaleqa baWdbiaaikdacaGGUaGaaGynaaaaaOWdaeaapeGaamOuaiaadwgapa WaaSbaaSqaa8qacaWG1bGaamiCaaWdaeqaaOWaaWbaaSqabeaapeGa aGimaiaac6cacaaI3aGaaGynaaaaaaaaaa@75D6@
Orifice Plate, Reader-Harris
This equation is in references 1 and 4 and is specifically for taps 1 diameter upstream and ½ diameter downstream of the orifice plate. Cd will be around 0.6.
C d = 0.5961 +   0.0261 * β 2 0.216 * β 8 + 0.000521 * 1 x 10 6 R e u p β 0.7 + .0188 + .0063 * A A * β 3.5 * 1 x 10 6 R e u p 0.3 + .0043 + .08 * e 10 0.123 * e 7 * 1 0.11 * A A * β 4 1 β 4 .0031 * M 2 0.8 * M 2 * β 1.3 + T e r m 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9iaaicdacaGGUaGaaGynaiaaiMdacaaI 2aGaaGymaiabgUcaRiaabckacaaIWaGaaiOlaiaaicdacaaIYaGaaG OnaiaaigdacaqGQaGaeqOSdi2damaaCaaaleqabaWdbiaaikdaaaGc cqGHsislcaaIWaGaaiOlaiaaikdacaaIXaGaaGOnaiaabQcacqaHYo GypaWaaWbaaSqabeaapeGaaGioaaaakiabgUcaRiaaicdacaGGUaGa aGimaiaaicdacaaIWaGaaGynaiaaikdacaaIXaGaaiOkamaabmaapa qaa8qadaWcaaWdaeaapeGaaGymaiaadIhacaaIXaGaaGima8aadaah aaWcbeqaa8qacaaI2aaaaaGcpaqaa8qacaWGsbGaamyza8aadaWgaa WcbaWdbiaadwhacaWGWbaapaqabaaaaOWdbiabek7aIbGaayjkaiaa wMcaa8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaiEdaaaGccqGHRa WkdaqadaWdaeaapeGaaiOlaiaaicdacaaIXaGaaGioaiaaiIdacqGH RaWkcaGGUaGaaGimaiaaicdacaaI2aGaaG4maiaacQcacaWGbbGaam yqaaGaayjkaiaawMcaaiaacQcacqaHYoGypaWaaWbaaSqabeaapeGa aG4maiaac6cacaaI1aaaaOGaaiOkamaabmaapaqaa8qadaWcaaWdae aapeGaaGymaiaadIhacaaIXaGaaGima8aadaahaaWcbeqaa8qacaaI 2aaaaaGcpaqaa8qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadwhaca WGWbaapaqabaaaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaIWaGaaiOlaiaaiodaaaGccqGHRaWkdaqadaWdaeaapeGaaiOlai aaicdacaaIWaGaaGinaiaaiodacqGHRaWkcaGGUaGaaGimaiaaiIda caGGQaGaamyza8aadaahaaWcbeqaa8qacqGHsislcaaIXaGaaGimaa aakiabgkHiTiaaicdacaGGUaGaaGymaiaaikdacaaIZaGaaiOkaiaa dwgapaWaaWbaaSqabeaapeGaeyOeI0IaaG4naaaaaOGaayjkaiaawM caaiaacQcadaqadaWdaeaapeGaaGymaiabgkHiTiaaicdacaGGUaGa aGymaiaaigdacaGGQaGaamyqaiaadgeaaiaawIcacaGLPaaacaGGQa WaaSaaa8aabaWdbiabek7aI9aadaahaaWcbeqaa8qacaaI0aaaaaGc paqaa8qacaaIXaGaeyOeI0IaeqOSdi2damaaCaaaleqabaWdbiaais daaaaaaOGaeyOeI0IaaiOlaiaaicdacaaIWaGaaG4maiaaigdacaGG QaWaaeWaa8aabaWdbiaad2eacaaIYaGaeyOeI0IaaGimaiaac6caca aI4aGaaiOkaiaad2eacaaIYaaacaGLOaGaayzkaaGaaiOkaiabek7a I9aadaahaaWcbeqaa8qacaaIXaGaaiOlaiaaiodaaaGccqGHRaWkca WGubGaamyzaiaadkhacaWGTbGaaGymaaaa@C2DC@
Where:
A A = 19000 * β R e u p 0.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbGaamyqaiabg2da9maabmaapaqaa8qadaWcaaWdaeaapeGa aGymaiaaiMdacaaIWaGaaGimaiaaicdacaGGQaGaeqOSdigapaqaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadwhacaWGWbaapaqabaaa aaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIWaGaaiOlai aaiIdaaaaaaa@4739@
M 2 = 2 * 0.47 1 β MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaaGOmaiabg2da9maalaaapaqaa8qacaaIYaGaaiOkaiaa icdacaGGUaGaaGinaiaaiEdaa8aabaWdbiaaigdacqGHsislcqaHYo Gyaaaaaa@4098@
if Di a pipe >2.8,  Term1=0.11* 0.75β * 2.8Di a pipe   else Term1=0 MathType@MTEF@5@5@+= feaahKart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaamOzaiaacckacaWGebGaamyAaiaadggapaWaaSbaaSqa a8qacaWGWbGaamyAaiaadchacaWGLbaapaqabaGcpeGaeyOpa4JaaG Omaiaac6cacaaI4aGaaiilaiaacckacaGGGcGaamivaiaadwgacaWG YbGaamyBaiaaigdacqGH9aqpcaaIWaGaaiOlaiaaigdacaaIXaGaai Okamaabmaapaqaa8qacaaIWaGaaiOlaiaaiEdacaaI1aGaeyOeI0Ia eqOSdigacaGLOaGaayzkaaGaaiOkamaabmaapaqaa8qacaaIYaGaai OlaiaaiIdacqGHsislcaWGebGaamyAaiaadggapaWaaSbaaSqaa8qa caWGWbGaamyAaiaadchacaWGLbaapaqabaaak8qacaGLOaGaayzkaa GaaiiOaiaacckacaWGLbGaamiBaiaadohacaWGLbGaaiiOaiaadsfa caWGLbGaamOCaiaad2gacaaIXaGaeyypa0JaaGimaaaa@6FCE@
Venturi, Cast
This constant Cd is in references 1, 2, and 4 and is for a venturi meter that has a surface finish from casting.
C d = 0.984 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9iaaicdacaGGUaGaaGyoaiaaiIdacaaI 0aaaaa@3C7E@
Venturi, Machined
This constant Cd is in references 1, 2, and 4 and is for a venturi meter that has a surface finish from machining.
C d = 0.995 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9iaaicdacaGGUaGaaGyoaiaaiMdacaaI 1aaaaa@3C80@
Venturi, Welded
This constant Cd is in references 1, 2, and 4 and is for a venturi meter that has a surface finish from welding.
C d = 0.985 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9iaaicdacaGGUaGaaGyoaiaaiIdacaaI 1aaaaa@3C7F@
Nozzle, ISA 1932
This equation is in references 1 and 4 and is for a nozzle that has a circular shape.
C d = 0.99 0.2262 β 4.1   0.00175 β 2 0.0033 β 4.15 * 1 x 10 6 R e u p 1.15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9iaaicdacaGGUaGaaGyoaiaaiMdacqGH sislcaaIWaGaaiOlaiaaikdacaaIYaGaaGOnaiaaikdacaqGQaGaae iOaiabek7aI9aadaahaaWcbeqaa8qacaaI0aGaaiOlaiaaigdaaaGc cqGHsislcaGGGcWaaeWaa8aabaWdbiaaicdacaGGUaGaaGimaiaaic dacaaIXaGaaG4naiaaiwdacaqGQaGaaeiOaiabek7aI9aadaahaaWc beqaa8qacaaIYaaaaOGaeyOeI0IaaGimaiaac6cacaaIWaGaaGimai aaiodacaaIZaGaaeOkaiaabckacqaHYoGypaWaaWbaaSqabeaapeGa aGinaiaac6cacaaIXaGaaGynaaaaaOGaayjkaiaawMcaaiaacQcada qadaWdaeaapeWaaSaaa8aabaWdbiaaigdacaWG4bGaaGymaiaaicda paWaaWbaaSqabeaapeGaaGOnaaaaaOWdaeaapeGaamOuaiaadwgapa WaaSbaaSqaa8qacaWG1bGaamiCaaWdaeqaaaaaaOWdbiaawIcacaGL PaaapaWaaWbaaSqabeaapeGaaGymaiaac6cacaaIXaGaaGynaaaaaa a@6E8D@
Nozzle, Long Radius
This equation is in references 1, 2, 3, and 4 and is for a nozzle that has an elliptical shape.
C d = 0.9965 0.00653 β 0.5 * 1 x 10 6 R e u p 0.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9iaaicdacaGGUaGaaGyoaiaaiMdacaaI 2aGaaGynaiabgkHiTiaaicdacaGGUaGaaGimaiaaicdacaaI2aGaaG ynaiaaiodacaqGQaGaaeiOaiabek7aI9aadaahaaWcbeqaa8qacaaI WaGaaiOlaiaaiwdaaaGccaGGQaWaaeWaa8aabaWdbmaalaaapaqaa8 qacaaIXaGaamiEaiaaigdacaaIWaWdamaaCaaaleqabaWdbiaaiAda aaaak8aabaWdbiaadkfacaWGLbWdamaaBaaaleaapeGaamyDaiaadc haa8aabeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaa icdacaGGUaGaaGynaaaaaaa@56BD@
Venturi-Nozzle, ISO
This equation is in references 1, 3, and 4 and is for an ISA 1932 nozzle followed by a straight section and conical expansion.
C d = 0.9858 0.196 β 4.5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamizaiabg2da9iaaicdacaGGUaGaaGyoaiaaiIdacaaI 1aGaaGioaiabgkHiTiaaicdacaGGUaGaaGymaiaaiMdacaaI2aGaae OkaiaabckacqaHYoGypaWaaWbaaSqabeaapeGaaGinaiaac6cacaaI 1aaaaaaa@47C4@
The Expansion factor, Y
The flow meter flow rate equations must use an expansion factor (also know as the expansibility factor) to account for the compressibility of a gas. The expansion factor is based on empirical correlations and is different for different types of flow meters.
Orifice Plates
This equation is in references 1 and 4.
Y = 1   0.351 + 0.256 * β 4 + 0.93 * β 8 * 1 τ 1 γ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbGaeyypa0JaaGymaiabgkHiTiaabckadaqadaWdaeaapeGa aGimaiaac6cacaaIZaGaaGynaiaaigdacqGHRaWkcaaIWaGaaiOlai aaikdacaaI1aGaaGOnaiaabQcacqaHYoGypaWaaWbaaSqabeaapeGa aGinaaaakiabgUcaRiaaicdacaGGUaGaaGyoaiaaiodacaGGQaGaeq OSdi2damaaCaaaleqabaWdbiaaiIdaaaaakiaawIcacaGLPaaacaGG QaWaaeWaa8aabaWdbiaaigdacqGHsislcqaHepaDpaWaaWbaaSqabe aapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiabeo7aNbaaaaaakiaa wIcacaGLPaaaaaa@57FB@
τ = P s t a t i c ,     v e n a c o n t r a c t a P s t a t i c ,   u p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDcqGH9aqpdaWcaaWdaeaapeGaamiua8aadaWgaaWcbaWd biaadohacaWG0bGaamyyaiaadshacaWGPbGaam4yaiaacYcacaGGGc GaaiiOaiaadAhacaWGLbGaamOBaiaadggacqGHsislcaWGJbGaam4B aiaad6gacaWG0bGaamOCaiaadggacaWGJbGaamiDaiaadggaa8aabe aaaOqaa8qacaWGqbWdamaaBaaaleaapeGaam4CaiaadshacaWGHbGa amiDaiaadMgacaWGJbGaaiilaiaacckacaWG1bGaamiCaaWdaeqaaa aaaaa@5AA8@
Venturi, Nozzle, Venturi-Nozzle
This equation is in references 1, 2, and 4.
Y = γ   τ 2 γ γ 1 1 β 4 1 β 4 * τ 2 γ 1 τ γ 1 γ 1 τ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbGaeyypa0ZaaOaaa8aabaWdbmaabmaapaqaa8qadaWcaaWd aeaapeGaeq4SdCMaaiiOaiabes8a09aadaahaaWcbeqaa8qadaWcaa WdaeaapeGaaGOmaaWdaeaapeGaeq4SdCgaaaaaaOWdaeaapeGaeq4S dCMaeyOeI0IaaGymaaaaaiaawIcacaGLPaaadaqadaWdaeaapeWaaS aaa8aabaWdbiaaigdacqGHsislcqaHYoGypaWaaWbaaSqabeaapeGa aGinaaaaaOWdaeaapeGaaGymaiabgkHiTiabek7aI9aadaahaaWcbe qaa8qacaaI0aaaaOGaaiOkaiabes8a09aadaahaaWcbeqaa8qadaWc aaWdaeaapeGaaGOmaaWdaeaapeGaeq4SdCgaaaaaaaaakiaawIcaca GLPaaadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGHsislcqaH epaDpaWaaWbaaSqabeaapeWaaSaaa8aabaWdbmaabmaapaqaa8qacq aHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaaapaqaa8qacqaHZoWz aaaaaaGcpaqaa8qacaaIXaGaeyOeI0IaeqiXdqhaaaGaayjkaiaawM caaaWcbeaaaaa@654E@

Flow Meter Element Outputs

Name Description Units
PIPE_AREA Physical area of a pipe upstream and downstream of the restriction. in^2, m^2
THROAT_AREA Physical area of the throat of the restriction (orifice, nozzle, or venturi). in^2, m^2
PIPE_DIA Physical diameter of a pipe upstream and downstream of the restriction. in, m
THROAT_DIA Physical diameter of the throat of the restriction (orifice, nozzle, or venturi). in, m
FLOWMETER_CD Discharge coefficient. (unitless)
NRPD Non-Recoverable Pressure Drop. psia, MPa
K_LOSS_INCOMPR_RSLT K= P total,up P total,down .5* ρ up *Ve l up 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGlbGaeyypa0ZaaSaaa8aabaWdbiaadcfapaWaaSbaaSqaa8qa caWG0bGaam4BaiaadshacaWGHbGaamiBaiaacYcacaWG1bGaamiCaa WdaeqaaOWdbiabgkHiTiaadcfapaWaaSbaaSqaa8qacaWG0bGaam4B aiaadshacaWGHbGaamiBaiaacYcacaWGKbGaam4BaiaadEhacaWGUb aapaqabaaakeaapeGaaiOlaiaaiwdacaGGQaGaeqyWdi3damaaBaaa leaapeGaamyDaiaadchaa8aabeaak8qacaGGQaGaamOvaiaadwgaca WGSbWdamaaDaaaleaapeGaamyDaiaadchaa8aabaWdbiaaikdaaaaa aaaa@58ED@ (unitless)
K_LOSS_COMPR_RSLT (unitless)
EXP_FACTOR Expansion factor, Y, for compressible gas only. (unitless)
PipeIn, AREA Physical area of a pipe upstream of the restriction. in^2, m^2
PipeIn, PT Total pressure upstream, based on the chamber total pressure and angle between the velocity and the element. psia, MPa
PipeIn, PS Static pressure upstream. psia, MPa
PipeIn, TT Total temperature upstream, based on the chamber's total temperature. Deg F, Deg K
PipeIn, TS Static temperature upstream. Deg F, Deg K
PipeIn, VEL Fluid velocity upstream. ft/sec, m/sec
PipeIn, MACH Fluid Mach number upstream, compressible gas only. (unitless)
PipeIn, VOLFLOW Volumetric flow rate upstream, incompressible liquid only. GPM, m^3/sec
PipeIn, REYN Reynolds number upstream. (unitless)
PipeIn, THETA Tangential flow angle upstream. degrees
PipeIn, PHI Radial flow angle upstream. degrees
PipeIn, RHO Fluid density upstream. lbm/ft^3, kg/m^3
Throat, AREA Physical area of the restriction. in^2, m^2
Throat, PT Total pressure at the vena-contracta, assumed to be the same as upstream. psia, MPa
Throat, PS Static pressure at the vena-contracta. psia, MPa
Throat, TT Total temperature at the vena-contracta, assumed to be the same as upstream. Deg F, Deg K
Throat, TS Static temperature at the vena-contracta. Deg F, Deg K
Throat, VEL Fluid velocity at the vena-contracta. ft/sec, m/sec
Throat, MACH Fluid Mach number at the vena-contracta, compressible gas only. (unitless)
Throat, VOLFLOW Volumetric flow rate at the vena-contracta, incompressible liquid only. GPM, m^3/sec
Throat, REYN Reynolds number at the vena-contracta. (unitless)
Throat, THETA Tangential flow angle at the vena-contracta, assumed to be the same as upstream. degrees
Throat, PHI Radial flow angle at the vena-contracta, assumed to be the same as upstream. degrees
Throat, RHO Fluid density at the vena-contracta. lbm/ft^3, kg/m^3
PipeEx, AREA Physical area of the pipe downstream of the restriction. Always the same as the upstream area. in^2, m^2
PipeEx, PT Total pressure downstream. psia, MPa
PipeEx, PS Static pressure downstream, same as the downstream chamber static pressure. psia, MPa
PipeEx, TT Total temperature downstream, same as upstream. Deg F, Deg K
PipeEx, TS Static temperature downstream. Deg F, Deg K
PipeEx, VEL Fluid velocity downstream. ft/sec, m/sec
PipeEx, MACH Fluid Mach number downstream, compressible gas only. (unitless)
PipeEx, VOLFLOW Volumetric flow rate downstream, incompressible liquid only. GPM, m^3/sec
PipeEx, REYN Reynolds number downstream. (unitless)
PipeEx, THETA Tangential flow angle downstream. degrees
PipeEx, PHI Radial flow angle downstream. degrees
PipeEx, RHO Fluid density downstream. lbm/ft^3, kg/m^3

References

  1. ASME MFC-3M-2004, Measurement of Fluid Flow in Pipes Using Orifice, Nozzle, and Venturi; 2017.
  2. Blevins, R. D., Applied Fluid Dynamics Handbook, Krieger Publications, 2003.
  3. White, Frank M., Fluid Mechanics, 8th Ed., McGraw - Hill, 2015.
  4. Crane, Flow of Fluids Through Valves, Fittings, and Pipe; Technical Paper 410.