Incompressible Tube Element

Incompressible Tube Element Description and Quick Guide

Figure 1.


The three elements shown here: Incompressible Tube, Elastic Pipe, and Inelastic Pipe, fall under the category of Incompressible Tubes. These elements solve the 1D Navier-Stokes equations with the option to incorporate friction, heat transfer, area change, rotation, buoyancy, and bend geometry effects.

The Incompressible Tube is the generic, all-purpose tube for incompressible models.

The Elastic Pipe includes the transient pressure wave effects also known as Water Hammer.

The Inelastic Pipe allows the user to pick from a built-in set of piping size and has a somewhat simplified set of inputs from the Incompressible Tube.

All three types of Incompressible Tubes must be used with fluids in the liquid phase.

The incompressible tube is subdivided into axial segments that can have unique inputs for geometry, heat transfer, and friction. The incompressible tube can also be subdivided into circumferential segments that can have unique heat transfer and friction.

Each segment of an incompressible tube can be associated with a thermal network node and convector.

Incompressible Tube Element Inputs

Table of the inputs for the incompressible tube element.

Element Specific Input Variables
Index UI Name (.flo label) Description
1 Cross-Sectional Shape

(CS_SHAPE)

Specifies method for defining tube geometry parameters: hydraulic diameter (DHI), wetted perimeter (PWI), and flow area (AFI). The cross-section shape is also used to find an effective hydraulic diameter.

The following typical settings are set automatically by the GUI based on the selections made for Geometric Input Type and Size.

1: Circular tube with uniform area along the length of the tube. A single value for area is set in STATION_CS_AREAS

2: Circular tube with uniform diameter along the length of the tube. A single value for diameter is set in STATION_HYDDIAMS_OR_PERIMS

6: Arbitrary cross-sectional shape with uniform area and hydraulic diameter along the length of the tube. A single value for area is set on STATION_CS_AREAS and a single value for hydraulic diameter is set on STATION_HYDDIAMS_OR_PERIMS

7: Arbitrary cross-sectional shape with uniform area and wetted perimeter along the length of the tube. A single value for area is set on STATION_CS_AREAS and a single value for wetted perimeter is set on STATION_HYDDIAMS_OR_PERIMS

11: Tapered circular tube with area specified at inlet and exit. Assumes linear tapering of area. Inlet and exit area values are set on STATION_CS_AREAS

12: Tapered circular tube with diameter specified at inlet and exit. Assumes linear tapering of diameter. Inlet and exit diameter values are set on STATION_HYDDIAMS_OR_PERIMS

16: Tapered arbitrary cross-section shaped tube with area and hydraulic diameter specified at inlet and exit. Assumes linear tapering of area and hydraulic diameter. Inlet and exit area values are set on STATION_CS_AREAS. Inlet and exit hydraulic diameter values are set on STATION_HYDDIAMS_OR_PERIMS.

17: Tapered arbitrary cross-section shaped tube with area and wetted perimeter specified at inlet and exit. Assumes linear tapering of area and wetted perimeter. Inlet and exit area values are set on STATION_CS_AREAS. Inlet and exit wetted perimeter values are set on STATION_HYDDIAMS_OR_PERIMS.

21: Circular tube with area specified each station. Assumes linear tapering of area between stations. NUM_STATIONS number of area values are set on STATION_CS_AREAS

22: Circular tube with diameter specified each station. Assumes linear tapering of diameter between stations. NUM_STATIONS number of diameter values are set on STATION_HYDDIAMS_OR_PERIMS

26: Arbitrary cross-section shaped tube with area and hydraulic diameter specified each station. Assumes linear tapering of area and hydraulic diameter between stations. NUM_STATIONS number of area values are set on STATION_CS_AREAS. NUM_STATIONS number of hydraulic diameter values are set on STATION_HYDDIAMS_OR_PERIMS

27: Arbitrary cross-section shaped tube with area and wetted perimeter specified each station. Assumes linear tapering of area and wetted perimeter between stations. NUM_STATIONS number of area values are set on.

There are additional setting for triangle, rectangle, elliptical and annular shapes.

2 Number of Stations

(NUM_STATIONS)

Number of stations in the tube.

Station 1 is at the inlet plane; station NUM_STATIONS is at the exit plane. NSTA can range from 2 to unlimited. During the solution process, the tube will be discretized into NUM_STATIONS minus one segments with average temperatures, pressures, and Reynolds Numbers for each segment.

A tube should be modelled with at least five stations. The number of stations can have a big impact on the convergence of attached chambers. If a chamber attached to this element is having difficulty converging, try increasing the number of stations. Of course, analysis speed may decrease as the number of stations increase.

3 Number of tube wall sides

(NUM_WALL_SIDES)

  • Number of circumferential wall segments around the tube. Wall segments can have their own loss mode, heat transfer mode, roughness definition, and turbulator definitions (heat transfer, friction, geometry).
4 Number of bends

(NUM_BENDS)

Number of bends in the tube. Each bend is defined by a bend radius, bend angle, location in the tube (either distance from start of tube, or a specified straight segment length between bends), loss multiplier and combination angle.
5 Tube Length

(LENGTH)

Length of the tube in inches. Do not include length within bends unless the bend losses are not otherwise accounted.
6 STATION_MODE Flag specifying station location definitions.

0: Stations are uniformly distributed along the length of the tube

1: Station location is defined as a percentage of length of the tube. User specifies percentage for each station in the STATION_LOCATIONS array. Valid values are 0-100.

2: Station location is defined as distance from the start of the tube. User specifies distance from start for each station in the STATION_LOCATIONS array. Valid values are 0-LENGTH

7 Turbulent Friction Relation

(FRIC_RELATION)

A flag that specifies which friction relation is used.

0.0: Smooth Wall Power law (Abuaf)

1.0: Swamee-Jain (approx. to Colebrook-White)

21: Webb Turbulator

22: TS Ravi Turbulator

23: Han 90 deg Turbulator

24: Han Angled Turbulator

Swamee-Jain (1.0) is recommended for non-zero roughness.

The turbulator options are only available when the wall surface finish is “Turbulated Surface”.

8 Roughness type

(ROUGH_TYPE)

Flag specifying measurement method of user-input ROUGHNESS value. Roughness values will be converted to san-grain roughness equivalent. For more information see Friction Correlations section in General Functions and Routines.

0: Equivalent sand-grain roughness

1: Average absolute roughness

2: Root mean square roughness

3: Peak-to-valley roughness

9 HTC Relation

(HTC_RELATION)

The “Duct Flow” Nu correlation used for turbulent flow.

See the “HTC Correlations” in the “General Functions and Routines” section for the equations.

-2) User Input Nu

-1) User Input HTC

1) Lapides-Goldstein

2) Dittus-Boelter

3) Sieder-Tate Combo

4) Gnielinski Combo

5) Bhatti-Shah

7) Sieder-Tate Turbulent Only

8) Gnielinski-Turbulent Only

9) Rotating Parallel Duct (Morris)

11) Webb Turbulator

12) TS Ravi Turbulator

13) Han 90 deg Turbulator

14) Han Angled Turbulator

41) Rotating Shaft (Seghir-Ouali and Gai)

The turbulator options are only available when the wall surface finish is “Turbulated Surface”.

10 Heat Transfer Inlet Effects Flag

(HT_INLET_EFF)

Flag specifying heat transfer inlet effects applied for the tube.

See the Heat Transfer Coefficients (HTC) section in General Functions and Routines.

0: No inlet effects

1: Abrupt local or uniform average inlet effects

3: Abrupt average inlet effects

4: Uniform local inlet effects

5: Between uniform average and local inlet effects

6: Between abrupt average and local inlet effects

11 Portion of Ustrm Cham. Dyn. Head Lost

(DQ_IN)

Inlet dynamic head loss. Valid range is 0.0 to 1.0 inclusive. An entry outside this range will cause a warning message and the value used will be 0 or 1 (whichever value is closest to the entry).

If DQ_IN > 0 and the upstream chamber has a positive component of relative velocity aligned with the centerline of the orifice, the driving pressure will be reduced by the equation:

P i n = P s u p s t r e a m + ( 1.0 D Q I N ) * ( P i n n o l o s s P s u p s t r e a m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamyAaiaad6gacqGH9aqpcaWGqbGaam4Ca8aadaWgaaWc baWdbiaadwhacaWGWbGaam4CaiaadshacaWGYbGaamyzaiaadggaca WGTbaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiaaigdacaGGUaGa aGimaiabgkHiTiaadseacaWGrbWdamaaBaaaleaapeGaamysaiaad6 eaa8aabeaaaOWdbiaawIcacaGLPaaacaGGQaWaaeWaa8aabaWdbiaa dcfacaWGPbGaamOBa8aadaWgaaWcbaWdbiaad6gacaWGVbGaeyOeI0 IaamiBaiaad+gacaWGZbGaam4CaaWdaeqaaOWdbiabgkHiTiaadcfa caWGZbWdamaaBaaaleaapeGaamyDaiaadchacaWGZbGaamiDaiaadk hacaWGLbGaamyyaiaad2gaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@63F1@

(Default value = 0.)

12 Rotor Index

(RPMSEL)

Element rotational speed pointer.

-1: Rotates with air.

0.0: Specifies a stationary element.

1.0: Rotor 1, RPM = general data ELERPM(1).

2.0: Rotor 2, RPM = general data ELERPM(2).

3.0: Rotor 3, RPM = general data ELERPM(3).

13 Gravity Multiplier

(GRAV_MULT)

Multiplier on the constant for acceleration due to gravity, Gc. Gc is nominally equal to 32.17405 lbm-ft/lbt-sec2.
14 Element Inlet Orientation: Tangential Angle

(THETA)

Angle (deg) between the element centerline at the entrance of the element and the reference direction.

If the element is rotating or directly connected to one or more rotating elements, the reference direction is defined as parallel to the engine centerline and the angle is the projected angle in the tangential direction. Otherwise, the reference direction is arbitrary but assumed to be the same as the reference direction for all other elements attached to the upstream chamber.

Theta for an element downstream of a plenum chamber has no impact on the solution except to set the default value of THETA_EX.

(See also THETA_EX)

15 Element Inlet Orientation: Radial Angle

(PHI)

Angle (deg) between the element centerline at the entrance of the element and the THETA direction. (spherical coordinate system)

Phi for an element downstream of a plenum chamber has no impact on the solution except to set the default value of PHI_EX.

(See also PHI_EX)

16

17

18

Exit K Loss:

Axial (K_EXIT_Z)

Tangential (K_EXIT_U)

Radial (K_EXIT_R)

Head loss factors in the Z, U, and R directions based on the spherical coordinate system of theta and phi.

Z = the axial direction. (theta=0 and phi=0)

U = the tangential direction. (theta=90 and phi=0)

R = the radial direction. (theta=0 and phi=90)

Valid values of K_EXIT_i (i = Z, U, R) range from zero (default) to one.

The three loss factors reduce the corresponding three components of velocity exiting the element.

V a c t u a l   e x i t   i d i r = V n o l o s s   e x i t   i d i r * 1 K _ E X I T _ i d i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbWdamaaBaaaleaapeGaamyyaiaadogacaWG0bGaamyDaiaa dggacaWGSbGaaiiOaiaadwgacaWG4bGaamyAaiaadshacaGGGcGaam yAaiaadsgacaWGPbGaamOCaaWdaeqaaOWdbiabg2da9iaadAfapaWa aSbaaSqaa8qacaWGUbGaam4BaiaadYgacaWGVbGaam4Caiaadohaca GGGcGaamyzaiaadIhacaWGPbGaamiDaiaacckacaWGPbGaamizaiaa dMgacaWGYbaapaqabaGcpeGaaiOkamaakaaapaqaa8qacaaIXaGaey OeI0Iaam4saiaac+facaWGfbGaamiwaiaadMeacaWGubGaai4xaiaa dMgacaWGKbGaamyAaiaadkhaaSqabaaaaa@64E5@

(Default value provides no loss, K_EXIT_i=0)

19 Element Exit Orientation: Tangential Angle

(THETA_EX)

Angle (deg) between the element exit centerline and the reference direction.

THETA_EX is an optional variable to be used if the orientation of the element exit differs from that of the element inlet.

The default value (THETA_EX = -999) will result in the assumption that THETA_EX = THETA.

Other values will be interpreted in the manner presented in the description of THETA.

20 Element Exit Orientation: Radial Angle

(PHI_EX)

Angle (deg) between the element exit centerline and the THETA_EX direction.

PHI_EX is an optional variable to be used if the orientation of the element exit differs from that of the element inlet.

The default value (PHI_EX = -999) will result in the assumption that PHI_EX = PHI.

Other values will be interpreted in the manner presented in the description of PHI.

21 Nusselt Number for Laminar Flow

(NU_LAM)

Nusselt number used in the laminar flow region (defaults to 4.36)
22 Elastic Pipe or (Incompressible Tube and Inelastic Pipe)

(ELASTIC_FLAG)

0 = No transient water hammer calculations for Incompressible Tube and Inelastic Pipe

1 = transient water hammer calculations for Elastic Pipe

23 Wall Thickness

(WALL_THICKNESS)

Pipe wall thickness for elastic pipe (water hammer) calculations
24 Exit Static Pressure Tolerance Value

(PRESSURE_TOL)

User defined exit static pressure convergence tolerance.

Caution should be used when increasing this very much above the default value.

Defaults to 0.000001 psia.

25 Number of Axial Grid Cells

(NSTA_ELASTIC)

Number of cells along the length of the tube for elastic pipe (water hammer) calculations. Should be greater than (5 times as many) the number of tube stations.
26 Aspect Ratio

(ASPECT_RATIO)

The aspect ratio of the tube cross section for an Arbitrary-Shape cross section. The aspect ratio should be between 0 and 1.
27 Laminar Friction Effects

(LAMR_FRIC_RLTN)

Laminar friction effects to use at the duct inlet. See the “Friction Correlations” in the “General Functions and Routines” section for the equations.

0) Off, assume fully developed laminar flow.

1) Muzychka-Yovanovich

28 Laminar HTC Relation

(NU_LAM_METHOD)

The “Duct Flow” Nu correlation used for laminar flow.

See the “HTC Correlations” in the “General Functions and Routines” section for the equations.

0) User Input Nu

1,4,5) Muzychka-Yovanovich

2) Hausen

29 NONE

(PROPS_METHOD)

No applicable
30 Poisson Ratio

(POISSON_RATIO)

Tube wall material property for elastic pipe (water hammer) calculations.
31 Inner Diameter (ID) Rotor Index

(RPMSEL_INNER)

The rotation of the inner diameter wall of an annulus. Used only for ROTATION_METH=1, Rotating Annulus.

0.0: Specifies a stationary inner annulus wall.

1.0: Rotor 1, RPM = general data ELERPM(1).

2.0: Rotor 2, RPM = general data ELERPM(2).

3.0: Rotor 3, RPM = general data ELERPM(3).

32 Inlet Head Loss Type

(K_IN_METHOD)

The type of inlet losses.

K – Incompr Loss Coef

Kin = inlet head loss / dynamic head,

or

K i n = P T , s u p p l y P T , a f t e r   l o s s 0.5   ρ   V 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGlbWdamaaBaaaleaapeGaamyAaiaad6gaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaamiua8aadaWgaaWcbaWdbiaadsfacaGGSa Gaam4CaiaadwhacaWGWbGaamiCaiaadYgacaWG5baapaqabaGcpeGa eyOeI0Iaamiua8aadaWgaaWcbaWdbiaadsfacaGGSaGaamyyaiaadA gacaWG0bGaamyzaiaadkhacaGGGcGaamiBaiaad+gacaWGZbGaam4C aaWdaeqaaaGcbaWdbiaaicdacaGGUaGaaGynaiaacckacqaHbpGCca GGGcGaamOva8aadaahaaWcbeqaa8qacaaIYaaaaaaaaaa@5889@

Cd – Compr Loss Coef

Upstream Cross Flow

K i n = ( 1.0 C d ) 2 1.0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGlbWdamaaBaaaleaapeGaamyAaiaad6gaa8aabeaak8qacqGH 9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdacaGGUaGaaGimaa WdaeaapeGaam4qaiaadsgaaaaacaGLOaGaayzkaaWdamaaCaaaleqa baWdbiaaikdaaaGccqGHsislcaaIXaGaaiOlaiaaicdaaaa@4438@

The tube inlet loss is assumed to be due to a cross flow velocity at the tube’s inlet and is calculated according to Ref. 6.

The data used is for a tube with L/D > 2.83, where the flow has recovered from the inlet effects and is at right angles to the cross flow.

The method is valid for both upstream momentum and upstream inertial chambers. It is not valid for upstream plenum chambers.

34 Two-phase Friction Relations

(2P_FRIC_RLTN)

Friction Factor relations for two-phase (liquid and gas) flow in the incompressible tube.

0: None - Same as 10 if two-phase flow is detected.

10: Homogeneous - Uses single phase friction equations with fluid properties for the two-phase fluid.

11: Friedel - Use equations from ref 7.

35 Chemical Reaction

(REACTION)

An option to include a chemical reaction in the tube. This can be used to change fluid species at each tube station. The only option is to use a custom correlation with subtype=CHEM_REACTION.
36 Bend Input Mode

(BEND_INPUT_MODE)

Flag indicating how the locations of bends are defined.

0: Bend location is distance from start of the tube in inches.

1: Bend location is defined by the distance of straight tube length between the end of the previous bend (or inlet, if it is the first bend) and the beginning of the current bend

37 Laminar-to-Transition Reynolds Number

(RE_LAM)

Reynolds number below which flow is assumed to be laminar
38 Transition-to-Turbulent Reynolds Number

(RE_TURB)

Reynolds number above which flow is assumed to be turbulent. Flow at Reynolds numbers between RE_LAM and RE_TURB are assumed to be in the transition region.
39 Friction Type

(FRIC_TYPE)

Friction factor output type.

1: Darcy friction factor

2: Fanning friction factor

40 Starting Length

(STLEN)

Starting length (in) used for the HTC inlet multiplier.

Used to modify X in calculating hx/ho:

X = X m e a s + S T L E N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybGaeyypa0Jaamiwa8aadaWgaaWcbaWdbiaad2gacaWGLbGa amyyaiaadohaa8aabeaak8qacqGHRaWkcaWGtbGaamivaiaadYeaca WGfbGaamOtaaaa@4208@

where Xmeas = Distance from tube inlet (station 1).

At station 1, X equals STLEN. If one physical tube is modelled as two or more elements strung together, STLEN should include the cumulative length of all tube elements leading into the current element unless something physical re-establishes the boundary layer.

41 Inlet Head Loss

(K_INLET)

Inlet head loss.

This is either a K or Cd depending on K_IN_METHOD.

42 Bulk Modulus

(BULK_MOD)

Fluid material property for elastic pipe (water hammer) calculations.
43 Water Hammer Inputs

(WALL_MATERIAL)

Either option for wave speed estimate or a material identifier for elastic pipe (water hammer) calculations.

0 = User inputs wave speed

1 = User inputs Young’s modulus

44 Young’s Modulus

(YOUNGS_MOD)

Tube wall material property for elastic pipe (water hammer) calculations.
45 Wave Velocity

(WAVE_SPEED)

Wave speed estimate for elastic pipe (water hammer) calculations.
46 Rotation Method

(ROTATION_METH)

Method for applying element rotation effects. Option 0 is the traditional method where all element walls are rotating at the same speed and the fluid is rotating at same speed as the walls. Options 1 and 2 calculate swirl and windage change along the length of the tube.

0: Stationary or Forced to Rotor Speed

1: Rotating Annulus

2: Rotating Coaxial Shaft

A1 Bend Radius

(BEND_RADIUS)

(array of 20 values in 4 lines of 5 each, NUM_BENDS values used)

Radius (in) of bend along tube centerline.

(See ‘ r ’ from graphic for COMBINATION_ANGLE below)

Each bend counted in NUM_BENDS must have a specified bend radius. Enter bends in order based on distance from beginning of tube (DIST_FR_STRT).

A2 Bend Angle

(BEND_ANGLE)

(array of 20 values in 4 lines of 5 each, NUM_BENDS values used)

Angle (deg) between the entering and exiting lengths of the bend.

Each bend must have a specified angle.

The maximum bend angle is 180°.

A3 Distance from Start

(DISTANCE)

(array of 20 values in 4 lines of 5 each, NUM_BENDS values used)

Array of values that indicate bend location in the tube. The interpretation of the values in the array depends on the value of BEND_INPUT_MODE:

BEND_INPUT_MODE = 0: DISTANCE is cumulative straight tube segment length (in.) to the start of the current bend,

BEND_INPUT_MODE = 1: DISTANCE is straight segment length (in.) from end of the previous bend (or inlet if it is the first bend in the tube) to the start of the current bend.

A4 Loss Multiplier

(LOSS_MULT)

(array of 20 values in 4 lines of 5 each, NUM_BENDS values used)

Loss multiplier for each bend (Default = 1.0).
A5 Combination Angle

(COMBINATION_ANGLE)

(array of 20 values in 4 lines of 5 each, NUM_BENDS minus one values used)

Relative angle (deg) between two bends in series.

The number of COMBINATION_ANGLE entries will be NUM_BENDS – 1. The first entry will be the combination angle between bends 1 and 2.

A COMBINATION_ANGLE of 0 degrees defines an ‘S’ shaped bend and 180 degrees defines a ‘U’ shaped bend.

The allowable range is 0 to 180 degrees.

Figure 2. Notation for combination of two 90° bends (Ref 16, pg. 228)
A6 STATION_LOCATIONS

(Dynamic array of NUM_STATIONS values)

Dynamic array of NUM_STATIONS station locations, specified as a percentage of length, a fraction of length, or a distance from start of tube, depending on the value of STATION_MODE. For STATION_MODE = 0 (uniformly distributed), this array will not be used.
A7 STATION_RADII

(Dynamic array of NUM_STATIONS values)

Dynamic array of NUM_STATIONS station radii in inches. Only applicable for rotating tubes, i.e. RPMSEL not equal to 0.
A8 STATION_HEIGHTS

(Dynamic array of NUM_STATIONS values)

Dynamic array of NUM_STATIONS station heights in inches. Only applicable for stationary tubes, i.e. RPMSEL = 0, and when gravitational effects are enabled. Station height is defined as distance above a datum and is used to determine gravitational effects on the fluid.
A9 Station cross-section areas

(STATION_CS_AREAS, dynamic array, length depends on value of CS_SHAPE)

Dynamic array of station cross-section areas. Length of the array is determined by the value of CS_SHAPE. STATION_CS_AREAS is only used for CS_SHAPE = 1, 6, 7, 11, 16, 17, 21, 26, or 27
CS_SHAPE Description Form of CS_AREAS
1 Circular tube with uniform area 1 value = tube area
6 Arbitrary cross-section tube with uniform area and hydraulic diameter 1 value = tube area
7 Arbitrary cross-section tube with uniform area and wetted perimeter 1 value = tube area
11 Tapered circular tube with area specified at inlet and exit 2 values = inlet and exit area
16 Tapered arbitrary cross-section shaped tube with area and hydraulic diameter specified at inlet and exit 2 values = inlet and exit area
17 Tapered arbitrary cross-section shaped tube with area and wetted perimeter specified at inlet and exit 2 values = inlet and exit area
21 Circular tube with area specified at each station NUM_STATIONS values = station area
26 Arbitrary cross-section shaped tube with area and hydraulic diameter specified at each station NUM_STATIONS values = station area
27 Arbitrary cross-section shaped tube with area and wetted perimeter specified at each station NUM_STATIONS values = station area
A10 Station hydraulic diameter or wetted perimeter

(STATION_HYDDIAMS_OR_PERIMS, dynamic array, length and meaning of value depends on value of CS_SHAPE)

Dynamic array of station hydraulic diameter or perimeter. Length of and meaning of value in the array is determined by the value of CS_SHAPE. STATION_HYDDIAMS_OR_PERIMS is only used for CS_SHAPE = 2, 6, 7, 12, 16, 17, 22, 26, or 27
CS_ SHAPE Description Form of CS_HYDIAMS_ OR_PERIMS
1 Circular tube with uniform area 1 value = 0
2 Circular tube with uniform diameter 1 value = Dh
6 Arbitrary cross-section tube with uniform area and hydraulic diameter 1 value = = Dh
7 Arbitrary cross-section tube with uniform area and wetted perimeter 1 value = Pw
11 Tapered circular tube with area specified at inlet and exit 1 value = 0
12 Tapered circular tube with diameter specified at inlet and exit 2 values = Din, Dexit
16 Tapered arbitrary cross-section shaped tube with area and hydraulic diameter specified at inlet and exit 2 values = Dh,in,Dh,exit
17 Tapered arbitrary cross-section shaped tube with area and wetted perimeter specified at inlet and exit 2 values = Pw,in,Pw,exit
21 Circular tube with area specified at each station 1 value = 0
22 Circular tube with diameter specified at each station NUM_STATIONS values = Dh,station
26 Arbitrary cross-section shaped tube with area and hydraulic diameter specified at each station NUM_STATIONS values = Dh,station
27 Arbitrary cross-section shaped tube with area and wetted perimeter specified at each station NUM_STATIONS values = Pw,station
A11 WALL_SIDE_FRACTIONS

(Dynamic array of length NUM_WALL_SIDES)

Array of length NUM_WALL_SIDES specifying the portion of the tube perimeter represented by each wall side (segment). WALL_SIDE_FRACTIONS can be input as either a fraction or a percentage. If input as a fraction:

i = 1 N U M _ W A L L _ S I D E S W A L L _ S I D E _ F R A C T I O N S ( i ) = 1.0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaa d6eacaWGvbGaamytaiaac+facaWGxbGaamyqaiaadYeacaWGmbGaai 4xaiaadofacaWGjbGaamiraiaadweacaWGtbaan8aabaWdbiabggHi LdaakiaadEfacaWGbbGaamitaiaadYeacaGGFbGaam4uaiaadMeaca WGebGaamyraiaac+facaWGgbGaamOuaiaadgeacaWGdbGaamivaiaa dMeacaWGpbGaamOtaiaadofadaqadaWdaeaapeGaamyAaaGaayjkai aawMcaaiabg2da9iaaigdacaGGUaGaaGimaaaa@5C6F@

And if input as a percentage:

i = 1 N U M _ W A L L _ S I D E S W A L L _ S I D E _ F R A C T I O N S ( i ) = 100 % MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaa d6eacaWGvbGaamytaiaac+facaWGxbGaamyqaiaadYeacaWGmbGaai 4xaiaadofacaWGjbGaamiraiaadweacaWGtbaan8aabaWdbiabggHi LdaakiaadEfacaWGbbGaamitaiaadYeacaGGFbGaam4uaiaadMeaca WGebGaamyraiaac+facaWGgbGaamOuaiaadgeacaWGdbGaamivaiaa dMeacaWGpbGaamOtaiaadofadaqadaWdaeaapeGaamyAaaGaayjkai aawMcaaiabg2da9iaaigdacaaIWaGaaGimaiaacwcaaaa@5D20@

Wall sides cover the length of the tube and thus apply at every station.

A12 WALL_SIDE_TYPES

(Dynamic array of length NUM_WALL_SIDES)

Array of length NUM_WALL_SIDES specifying the surface type of each wall side (segment).

0: Smooth surface

1: Rough surface

2: Turbulated surface

For types 1 and 2, additional inputs are required to define roughness and/or turbulator geometry.

Wall sides cover the length of the tube and thus apply at every station.

A13 LOSS_MODE_ON_EACH_SIDE

(Dynamic array of length NUM_WALL_SIDES)

Array of length NUM_WALL_SIDES specifying the momentum loss calculation method for each wall side (segment).

0: No momentum loss

1: Specified roughness, uniform along tube length

2: Specified friction coefficient, uniform along tube length

3: Specified Kloss, uniform along tube length

4: Specified friction multiplier applied to calculated friction, uniform along tube length

12: Linearly tapered friction coefficient, specified at inlet and exit

14: Linearly tapered friction multiplier applied to calculated friction, specified at inlet and exit

21: Specified roughness for each tube segment (between stations)

22: Specified friction coefficient for each tube segment (between stations)

23: Specified Kloss for each tube segment (between stations)

24: Specified friction multiplier applied to calculated friction for each tube segment (between stations)

The choice of LOSS_MODE_ON_EACH_SIDE will determine the length of and interpretation of the values in the LOSS_QUANTITIES_ON_SIDE_X arrays

Wall sides cover the length of the tube and thus apply at every station.

A14 HEAT_MODE_ON_EACH_SIDE

(Dynamic array of length NUM_WALL_SIDES)

Array of length NUM_WALL_SIDES specifying the heat transfer calculation method for each wall side (segment).

0: Adiabatic

1: Uniform heat load (Btu/s)

2: Uniform heat load (Btu/lbm)

3: Uniformly distributed delta T (Not implemented)

4: Fixed fluid total temperature at tube exit (Not implemented)

5: Calculated inner wall convection

6: Inner wall convection with constant Nusselt number

7: Inner wall convection with constant heat transfer coefficient

8: Calculated inner wall convection with constant Hmult

16: Inner wall convection with linearly tapered Nusselt number, specified at inlet and exit.

17: Inner wall convection with linearly tapered HTC, specified at inlet and exit.

18: Calculated inner wall convection with linearly tapered Hmult, specified at inlet and exit.

21: Specified heat load (Btu/s) at each tube segment (between stations)

22: Specified heat load (Btu/lbm) at each tube segment (between stations)

23: Specified delta T across each tube segment (between stations) (Not implemented)

24: Specified total temperature at each tube station (Not implemented)

26: Inner wall convection with Nusselt number specified for each tube segment (between stations)

27: Inner wall convection with HTC specified for each tube segment (between stations)

28: Calculated inner wall convection with Hmult specified for each tube segment (between stations)

The choice of HEAT_MODE_ON_EACH_SIDE will determine the length of and interpretation of the values in the HEAT_QUANTITIES_ON_SIDE_X arrays

Wall sides cover the length of the tube and thus apply at every station.

A15 LOSS_QUANTITIES_ON_SIDE_X These arrays hold the loss quantities on side number X. There will be NUM_SIDES number of these arrays in the database and their length and interpretation of contained values is determined by the value of LOSS_MODE_ON_EACH_SIDE as follows:
LOSS_ MODE_ON_ EACH_SIDE Description Form of LOSS_QUANTITIES_ON_SIDE_X
0 No momentum loss 1 value = 0 (not used)
1 Specified uniform roughness 1 value = roughness
2 Specified uniform friction coefficient 1 value = friction coefficient
3 Specified uniform Kloss 1 value = Kloss
4 Specified uniform friction multiplier 1 value = friction multiplier
12 Linearly tapered friction coefficient, specified at inlet and exit 1 value = friction coefficient
14 Linearly tapered friction multiplier, specified at inlet and exit 1 value = friction multiplier
21 Specified roughness for each tube segment (between stations) (NUM_STATIONS – 1) values = segment roughness
22 Specified friction coefficient for each tube segment (between stations) (NUM_STATIONS – 1) values = segment friction coefficient
23 Specified Kloss for each tube segment (between stations) (NUM_STATIONS – 1) values = segment Kloss
24 Specified friction multiplier for each tube segment (between stations) (NUM_STATIONS – 1) values = segment friction multiplier
Note: Interpretation of roughness values specified for LOSS_QUANTITIES_ON_SIDE_X will depend on the value of the ROUGH_TYPE input parameter.
A15 HEAT_QUANTITIES_ON_SIDE_X These arrays hold the heat transfer quantities on side number X. There will be NUM_SIDES number of these arrays in the database and their length and interpretation of contained values is determined by the value of LOSS_MODE_ON_EACH_SIDE as follows:
HEAT_ MODE_ON_ SIDE_X Description Form of LOSS_QUANTITIES_ON_SIDE_X
0 Adiabatic 1 value = 0 (not used)
1 Uniform heat load (BTU/s) 1 value = Heat load in BTU/s
2 Uniform heat load (BTU/lbm) 1 value = Heat load in BTU/lbm
3 Uniformly distributed ΔT 1 value = ΔT across the whole tube in oF
4 Fixed fluid total temperature at tube exit 1 value = TTexit­ (oF)
5 Calculated inner wall convection 1 value = 0 (not used)
6 Inner wall convection with constant Nusselt number 1 value = Nu
7 Inner wall convection with constant HTC number 1 value = HTC (Btu/hr-ft2-oF)
8 Calculated inner wall convection with constant Hmult 1 value = Hmult
16 Inner wall convection with linearly tapered Nusselt no. 2 values = Nuin, Nuexit
17 Inner wall convection with linearly tapered HTC 2 values = HTCin, HTCexit
18 Calculated inner wall convection with linearly tapered Hmult 2 values = Hmultin, Hmultout
21 Specified heat load (BTU/s) at each tube segment (between segments) (NUM_STATIONS – 1) values = heat load (BTU/s)
22 Specified heat load (BTU/lbm) at each tube segment (between segments) (NUM_STATIONS – 1) values = heat load (BTU/lbm)
A15 HEAT_QUANTITIES_ON_SIDE_X

(Continued)

HEAT_ MODE_ON_ SIDE_X Description Form of LOSS_QUANTITIES_ON_SIDE_X
23 Specified ΔT across each tube segment (between stations) (NUM_STATIONS – 1) values = ΔTsegment (oF)
24 Specified fluid total temperature at each station NUM_STATIONS values = TTstation
26 Inner wall convection with Nusselt number specified for each segment (between stations) (NUM_STATIONS – 1) values = Nusegment
27 Inner wall convection with HTC specified for each tube segment (between stations) (NUM_STATIONS – 1) values = HTCsegment
28 Calculated inner wall convection with Hmult specified for each tube segment (between stations) (NUM_STATIONS – 1) values = Hmultsegment
Note: For Heat Modes using calculated inner wall convection, the method of heat transfer calculation is determined by the value of the HTC_RELATION input parameter.
A16 WALL_TEMPERATURE_ON_SIDE_X

(Dynamic array, number of values is input by the user)

Surface temperature of the tube wall for use in heat transfer and fluid calculations. The user has three options for number of values to input for wall temperature. The size of the array determines how the values in the array are determined:
Size of Array Interpretation of Values
1 Value Uniform wall temperature (oF) along the whole tube
2 Values Inlet and exit wall temperature (oF) linearly interpolated along the length of the tube
NUM_STATIONS Values Wall temperature (oF) specified at every station along the tube
A17 TURBULATOR_QUANTITIES_ON_SIDE_X If “Turbulated Surface” is chosen for a wall, this array will contain the turbulator information. The information in the array: height, width, pitch, angle, and profile.

Incompressible Tube Element Theory Manual

The incompressible tube element routine simulates incompressible liquid or gas flow through a passage where friction is a significant pressure loss mechanism. Both laminar and turbulent flows are accommodated by the routine as is heat transfer with either internal turbulators or with conduction/convection/radiation using thermal networks.

The body of the tube is divided into segments of arbitrary length, the number of segments, typically (but not limited to) between 5 and 15, being that specified in the input file. The beginning and end of each segment is represented as a “station” so there is one more station than the number of segments used for the tube. The geometry of the tube flow passage is defined by a combination of two of the three input variables, flow area, hydraulic diameter, and wetted perimeter, specified for each of the tube stations, the remaining variable being calculated using the equation:

D h y d = 4 * A r e a P e r i m e t e r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebWdamaaBaaaleaapeGaamiAaiaadMhacaWGKbaapaqabaGc peGaeyypa0ZaaSaaa8aabaWdbiaaisdacaGGQaGaamyqaiaadkhaca WGLbGaamyyaaWdaeaapeGaamiuaiaadwgacaWGYbGaamyAaiaad2ga caWGLbGaamiDaiaadwgacaWGYbaaaaaa@48D1@

The tube routine is divided into two main sections: a flow direction calculation and a flow iteration loop. In the flow direction section, the procedures described in the paragraphs on computing the element flow inlet and outlet conditions are employed to define the inlet driving pressure (PTS), the inlet temperature, the secondary fluid mass fraction, and the exit back pressure (PSEB). If the tube is rotating and its inlet and outlet are at different radii, an estimate of the pumping effect due to rotation is used to compute an effective inlet pressure, PTSM. The procedure used to calculate the pressure ratio, PTSM / PTS, is identical to that for a forced vortex turning at the specified element RPM. If PTS (or PTSM) is greater than PSEB, these pressures are employed with a simple overall flow coefficient, based on inlet pressure drop and estimated friction effect, to estimate the fluid velocity at the tube exit plane. If PTS (or PTSM) is less than PSEB, the calculation is repeated with the flow direction reversed.

The mass, momentum, and energy conservation must be maintained along the length of the tube. The methods used are described here.

Mass Equation

The continuity equation is given as:

m ˙ = ρ A v = c o n s t a n t   f o r   e a c h   t u b e   s t a t i o n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaacaWdbiabg2da9iabeg8aYjaadgeacaWG2bGaeyyp a0Jaam4yaiaad+gacaWGUbGaam4CaiaadshacaWGHbGaamOBaiaads hacaGGGcGaamOzaiaad+gacaWGYbGaaiiOaiaadwgacaWGHbGaam4y aiaadIgacaGGGcGaamiDaiaadwhacaWGIbGaamyzaiaacckacaWGZb GaamiDaiaadggacaWG0bGaamyAaiaad+gacaWGUbaaaa@59C6@

Momentum Equation

The momentum equation for an incompressible tube can be written as (Bernoulli’s equation) [Ref 3]:

The kinetic energy term can be re-written as:

And the momentum equation can be re-written as:

The kinetic energy term can be broken down further as:

This decomposition will be used because for incompressible liquids, the density changes will not be large, but there might be significant velocity changes along the tube.

The momentum equation with this implemented is:

The left-hand side of the equation above can be integrated analytically, while the right-hand side must be integrated numerically:

Note that:

Also, define total pressure as:

To obtain:

Note that this Is the first order Taylor expansion of compressible relation in the incompressible limit.

I M x       MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaamytaiaadIhacaGGGcGaaiiOaiaa cckaa8aabeaaaaa@3C7C@
can be calculated using the trapezoidal rule as shown below:

Flow Function

Continuity at the tube exit plane is defined by:

m ˙ = ρ e x A e x v e x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaacaWdbiabg2da9iabeg8aY9aadaWgaaWcbaWdbiaa dwgacaWG4baapaqabaGcpeGaamyqa8aadaWgaaWcbaWdbiaadwgaca WG4baapaqabaGcpeGaamODa8aadaWgaaWcbaWdbiaadwgacaWG4baa paqabaaaaa@42B1@

Where:

1 2 * 144 * g c ρ e x v e x 2 = P T e x P S e x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiaacQcacaaIXaGa aGinaiaaisdacaGGQaGaam4za8aadaWgaaWcbaWdbiaadogaa8aabe aaaaGcpeGaeqyWdi3damaaBaaaleaapeGaamyzaiaadIhaa8aabeaa k8qacaWG2bWdamaaDaaaleaapeGaamyzaiaadIhaa8aabaWdbiaaik daaaGccqGH9aqpcaWGqbWdamaaBaaaleaapeGaamivaiaadwgacaWG 4baapaqabaGcpeGaeyOeI0Iaamiua8aadaWgaaWcbaWdbiaadofaca WGLbGaamiEaaWdaeqaaaaa@4FD1@

Consider, as defined in the Momentum Equation section:

P T ( x ) = P T ( 0 ) I m ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbWdamaaBaaaleaapeGaamivaaWdaeqaaOWdbmaabmaapaqa a8qacaWG4baacaGLOaGaayzkaaGaeyypa0Jaamiua8aadaWgaaWcba Wdbiaadsfaa8aabeaak8qadaqadaWdaeaapeGaaGimaaGaayjkaiaa wMcaaiabgkHiTiaadMeapaWaaSbaaSqaa8qacaWGTbaapaqabaGcpe WaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaaaa@4630@

And:

1 2 * 144 * g c ρ e x v e x 2 = m ˙ 2 2 ρ e x A e x 2 g c * 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGOmaiaacQcacaaIXaGa aGinaiaaisdacaGGQaGaam4za8aadaWgaaWcbaWdbiaadogaa8aabe aaaaGcpeGaeqyWdi3damaaBaaaleaapeGaamyzaiaadIhaa8aabeaa k8qacaWG2bWdamaaDaaaleaapeGaamyzaiaadIhaa8aabaWdbiaaik daaaGccqGH9aqpdaWcaaWdaeaapeGabmyBa8aagaGaamaaCaaaleqa baWdbiaaikdaaaaak8aabaWdbiaaikdacqaHbpGCpaWaaSbaaSqaa8 qacaWGLbGaamiEaaWdaeqaaOWdbiaadgeapaWaa0baaSqaa8qacaWG LbGaamiEaaWdaeaapeGaaGOmaaaakiaadEgapaWaaSbaaSqaa8qaca WGJbaapaqabaGcpeGaaiOkaiaaigdacaaIYaaaaaaa@566A@

which yields:

m ˙ 2 2 ρ e x A e x 2 g c * 12 = P T i n P S e x I M e x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGabmyBa8aagaGaamaaCaaaleqabaWdbiaaikda aaaak8aabaWdbiaaikdacqaHbpGCpaWaaSbaaSqaa8qacaWGLbGaam iEaaWdaeqaaOWdbiaadgeapaWaa0baaSqaa8qacaWGLbGaamiEaaWd aeaapeGaaGOmaaaakiaadEgapaWaaSbaaSqaa8qacaWGJbaapaqaba GcpeGaaiOkaiaaigdacaaIYaaaaiabg2da9iaadcfapaWaaSbaaSqa a8qacaWGubGaamyAaiaad6gaa8aabeaak8qacqGHsislcaWGqbWdam aaBaaaleaapeGaam4uaiaadwgacaWG4baapaqabaGcpeGaeyOeI0Ia amysa8aadaWgaaWcbaWdbiaad2eacaWGLbGaamiEaaWdaeqaaaaa@5462@

We can rearrange this equation to obtain the flow function as:

m ˙ = ( 2 ρ e x A e x 2 g c * 12 ) ( P T i n P S e x I M e x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaacaWdbiabg2da9maakaaapaqaa8qadaqadaWdaeaa peGaaGOmaiabeg8aY9aadaWgaaWcbaWdbiaadwgacaWG4baapaqaba GcpeGaamyqa8aadaqhaaWcbaWdbiaadwgacaWG4baapaqaa8qacaaI YaaaaOGaam4za8aadaWgaaWcbaWdbiaadogaa8aabeaak8qacaGGQa GaaGymaiaaikdaaiaawIcacaGLPaaadaqadaWdaeaapeGaamiua8aa daWgaaWcbaWdbiaadsfacaWGPbGaamOBaaWdaeqaaOWdbiabgkHiTi aadcfapaWaaSbaaSqaa8qacaWGtbGaamyzaiaadIhaa8aabeaak8qa cqGHsislcaWGjbWdamaaBaaaleaapeGaamytaiaadwgacaWG4baapa qabaaak8qacaGLOaGaayzkaaaaleqaaaaa@56C5@

Inlet and Exit Plane Calculations

There might be pressure losses at the inlet and exit planes of the incompressible tube element due to bends and junctions. In such cases, the loss coefficients and the pressure terms become:

Flow Derivatives

The Flow Simulator solver uses Newton-Raphson method to find a solution and requires the flow rate derivatives δ m ˙ δ P T u p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaeqiTdqMabmyBa8aagaGaaaqaa8qacqaH0oaz caWGqbWdamaaBaaaleaapeGaamivaiaadwhacaWGWbaapaqabaaaaa aa@3EA3@ and δ m ˙ δ P S d n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaeqiTdqMabmyBa8aagaGaaaqaa8qacqaH0oaz caWGqbWdamaaBaaaleaapeGaam4uaiaadsgacaWGUbaapaqabaaaaa aa@3E8F@ . The calculation method is based on a Taylor series expansion of a complex valued function:

Take the imaginary part of the equation above to obtain:

The first-order derivative of the above equation becomes:

Similarly, the first order flow derivatives required by the Flow Simulator solver are given as:

Energy Equation

Start with the differential form of the steady state energy balance equation:

d H d x = m ˙ C p d T d x = h C ( T w T ) + m ˙ ( ω 2 r d r d x g c d z d x ) + q i n ' ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaamizaiaadIeaa8aabaWdbiaadsgacaWG4baa aiabg2da9iqad2gapaGbaiaapeGaam4qa8aadaWgaaWcbaWdbiaadc haa8aabeaak8qadaWcaaWdaeaapeGaamizaiaadsfaa8aabaWdbiaa dsgacaWG4baaaiabg2da9iaadIgacaWGdbWaaeWaa8aabaWdbiaads fapaWaaSbaaSqaa8qacaWG3baapaqabaGcpeGaeyOeI0IaamivaaGa ayjkaiaawMcaaiabgUcaRiqad2gapaGbaiaapeWaaeWaa8aabaWdbi abeM8a39aadaahaaWcbeqaa8qacaaIYaaaaOGaamOCamaalaaapaqa a8qacaWGKbGaamOCaaWdaeaapeGaamizaiaadIhaaaGaeyOeI0Iaam 4za8aadaWgaaWcbaWdbiaadogaa8aabeaak8qadaWcaaWdaeaapeGa amizaiaadQhaa8aabaWdbiaadsgacaWG4baaaaGaayjkaiaawMcaai abgUcaRiaadghapaWaa0baaSqaa8qacaWGPbGaamOBaaWdaeaapeGa ai4jaaaakmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaaaaaa@6519@

The incompressible tube uses the following energy integral [ref 5 section 1.6]:

These integrals are calculated in a semi-analytic way.

Integral I H 1 , x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaamisaiaaigdacaGGSaGaamiEaaWd aeqaaaaa@3A76@ is calculated as:

Integral I H 21 , x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaamisaiaaikdacaaIXaGaaiilaiaa dIhaa8aabeaaaaa@3B32@ is calculated as:

Where:

Integral I H 22 , x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaamisaiaaikdacaaIYaGaaiilaiaa dIhaa8aabeaaaaa@3B33@ is calculated as:

Finally, temperature at location x is calculated as:

Multiple Wall Segment Case

In the case of an incompressible tube with multiple wall segments defined around the circumference of the tube, the differential form of the energy balance equation becomes:

where j is an individual circumferential wall segment.

Taking the first term on the right-hand side of the above equation:

In this equation, only the coefficients are different, and we can calculate an equivalent wall temperature:

Similarly, the total amount of external heat can be obtained:

And the differential form of the energy balance equation becomes:

In this case, the following integrals must be used to calculate temperature:

where:

Coupling with the Thermal Network Solver

The total amount of heat added to the fluid is given by:

Heat added, Δ Q a d v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHuoarcaWGrbWdamaaBaaaleaapeGaamyyaiaadsgacaWG2baa paqabaaaaa@3B79@ , is a result of convection from the tube wall:

Wall temperature along a segment is constant and we assume that there is a fluid temperature that satisfies:

The fluid temperature can be calculated as:

Rotating Annulus and Coaxial Shaft Angular Momentum Balance

If the rotation method is “Rotating Annulus” or “Rotating Coaxial Shaft”, an angular momentum balance equation is solved to calculate the change of fluid swirl and fluid temperature due to windage. These rotation methods require that the element is attached to inertial chambers at each end. These rotation methods can be used instead of cavities for long annular or coaxial cylinders. For example, the Rotating Annulus method is used between the red and blue cylinders while the Rotating Coaxial Shaft is used inside the red cylinder in this figure.
Figure 3.


The angular momentum equation that is solved:

T q r T q s = m ˙ * ω * R o u t * X K o u t R i n * X K i n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubGaamyCa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH sislcaWGubGaamyCa8aadaWgaaWcbaWdbiaadohaa8aabeaak8qacq GH9aqpceWGTbWdayaacaWdbiaacQcacqaHjpWDcaGGQaWaaeWaa8aa baWdbiaadkfapaWaaSbaaSqaa8qacaWGVbGaamyDaiaadshaa8aabe aak8qacaGGQaGaamiwaiaadUeapaWaaSbaaSqaa8qacaWGVbGaamyD aiaadshaa8aabeaak8qacqGHsislcaWGsbWdamaaBaaaleaapeGaam yAaiaad6gaa8aabeaak8qacaGGQaGaamiwaiaadUeapaWaaSbaaSqa a8qacaWGPbGaamOBaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@5718@

T q r = t o r q u e   f r o m   t h e   r o t o r   s u r f a c e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubGaamyCa8aadaWgaaWcbaWdbiaadkhaa8aabeaak8qacqGH 9aqpcaWG0bGaam4BaiaadkhacaWGXbGaamyDaiaadwgacaGGGcGaam OzaiaadkhacaWGVbGaamyBaiaacckacaWG0bGaamiAaiaadwgacaGG GcGaamOCaiaad+gacaWG0bGaam4BaiaadkhacaGGGcGaam4Caiaadw hacaWGYbGaamOzaiaadggacaWGJbGaamyzaaaa@5695@

T q s = t o r q u e   f r o m   t h e   s t a t o r   s u r f a c e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubGaamyCa8aadaWgaaWcbaWdbiaadohaa8aabeaak8qacqGH 9aqpcaWG0bGaam4BaiaadkhacaWGXbGaamyDaiaadwgacaGGGcGaam OzaiaadkhacaWGVbGaamyBaiaacckacaWG0bGaamiAaiaadwgacaGG GcGaam4CaiaadshacaWGHbGaamiDaiaad+gacaWGYbGaaiiOaiaado hacaWG1bGaamOCaiaadAgacaWGHbGaam4yaiaadwgaaaa@5782@

m ˙ = m a s s   f l o w r a t e   t h r o u g h   t h e   t u b e   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaacaWdbiabg2da9iaad2gacaWGHbGaam4Caiaadoha caGGGcGaamOzaiaadYgacaWGVbGaam4DaiaadkhacaWGHbGaamiDai aadwgacaGGGcGaamiDaiaadIgacaWGYbGaam4BaiaadwhacaWGNbGa amiAaiaacckacaWG0bGaamiAaiaadwgacaGGGcGaamiDaiaadwhaca WGIbGaamyzaiaacckaaaa@5674@

ω = r o t a t i o n a l   s p e e d   r a d / s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHjpWDcqGH9aqpcaWGYbGaam4BaiaadshacaWGHbGaamiDaiaa dMgacaWGVbGaamOBaiaadggacaWGSbGaaiiOaiaadohacaWGWbGaam yzaiaadwgacaWGKbGaaiiOamaabmaapaqaa8qacaWGYbGaamyyaiaa dsgacaGGVaGaam4CaaGaayjkaiaawMcaaaaa@4F61@

X K in, out =Ratio of the fluid absolute rotational speed to the rotational                       reference frame at inlet and exit of the tube segment MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaadIfacaWGlbWdamaaBaaaleaapeGaamyAaiaad6gacaGG SaGaaiiOaiaad+gacaWG1bGaamiDaaWdaeqaaOWdbiabg2da9iaadk facaWGHbGaamiDaiaadMgacaWGVbGaaiiOaiaad+gacaWGMbGaaiiO aiaadshacaWGObGaamyzaiaacckacaWGMbGaamiBaiaadwhacaWGPb GaamizaiaacckacaWGHbGaamOyaiaadohacaWGVbGaamiBaiaadwha caWG0bGaamyzaiaacckacaWGYbGaam4BaiaadshacaWGHbGaamiDai aadMgacaWGVbGaamOBaiaadggacaWGSbGaaiiOaiaadohacaWGWbGa amyzaiaadwgacaWGKbGaaiiOaiaadshacaWGVbGaaiiOaiaadshaca WGObGaamyzaiaacckacaWGYbGaam4BaiaadshacaWGHbGaamiDaiaa dMgacaWGVbGaamOBaiaadggacaWGSbaabaGaaiiOaiaacckacaGGGc GaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaadkhacaWGLbGaamOzaiaadwgacaWGYbGa amyzaiaad6gacaWGJbGaamyzaiaacckacaWGMbGaamOCaiaadggaca WGTbGaamyzaiaacckacaWGHbGaamiDaiaacckacaWGPbGaamOBaiaa dYgacaWGLbGaamiDaiaacckacaWGHbGaamOBaiaadsgacaGGGcGaam yzaiaadIhacaWGPbGaamiDaiaacckacaWGVbGaamOzaiaacckacaWG 0bGaamiAaiaadwgacaGGGcGaamiDaiaadwhacaWGIbGaamyzaiaacc kacaWGZbGaamyzaiaadEgacaWGTbGaamyzaiaad6gacaWG0baaaaa@C86B@

R i n , o u t = F l o w   r a d i u s   a t   i n l e t   a n d   e x i t   o f   t h e   t u b e   s e g m e n t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbWdamaaBaaaleaapeGaamyAaiaad6gacaGGSaGaam4Baiaa dwhacaWG0baapaqabaGcpeGaeyypa0JaamOraiaadYgacaWGVbGaam 4DaiaacckacaWGYbGaamyyaiaadsgacaWGPbGaamyDaiaadohacaGG GcGaamyyaiaadshacaGGGcGaamyAaiaad6gacaWGSbGaamyzaiaads hacaGGGcGaamyyaiaad6gacaWGKbGaaiiOaiaadwgacaWG4bGaamyA aiaadshacaGGGcGaam4BaiaadAgacaGGGcGaamiDaiaadIgacaWGLb GaaiiOaiaadshacaWG1bGaamOyaiaadwgacaGGGcGaam4Caiaadwga caWGNbGaamyBaiaadwgacaWGUbGaamiDaaaa@6DA0@

The flow radius is always the center of an annulus, but the flow radius is not well defined for a Rotating Coaxial Shaft. You must supply the flow radius for the Rotating Coaxial Shaft method. If the flow radius is 0, the XK=1 and the fluid is rotating at the same speed as the shaft. A flow radius of 0.25 times the shaft diameter is a good value to use unless experience indicates a different value.

The torque equations use the same skin friction coefficient equations used for cylindrical surfaces in cavities.

The Reynolds number will use an effective velocity based on axial and rotational velocities. This effective Reynolds number is used in the heat transfer coefficient and friction calculations. Furthermore, the friction uses an effective length to account for the spiral path of the flow through the tube. See reference 8 by Gazley.

V e f f = V a x i a l 2 + V r e l a t i v e _ t a n g e n t i a l 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGwbWdamaaBaaaleaapeGaamyzaiaadAgacaWGMbaapaqabaGc peGaeyypa0ZaaOaaa8aabaWdbiaadAfapaWaa0baaSqaa8qacaWGHb GaamiEaiaadMgacaWGHbGaamiBaaWdaeaapeGaaGOmaaaakiabgUca RiaadAfapaWaa0baaSqaa8qacaWGYbGaamyzaiaadYgacaWGHbGaam iDaiaadMgacaWG2bGaamyzaiaac+facaWG0bGaamyyaiaad6gacaWG NbGaamyzaiaad6gacaWG0bGaamyAaiaadggacaWGSbaapaqaa8qaca aIYaaaaaqabaaaaa@56B0@

R e e f f = ρ   V e f f   D h   μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadwgacaWGMbGaamOzaaWd aeqaaOWdbiabg2da9maalaaapaqaa8qacqaHbpGCcaGGGcGaamOva8 aadaWgaaWcbaWdbiaadwgacaWGMbGaamOzaaWdaeqaaOWdbiaaccka caWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiaacckaa8aaba WdbiabeY7aTbaaaaa@4978@

A table of results is written to the .res file for these rotation methods. This table contains swirls, relative tangential velocities, and torques at each tube station.

Incompressible Tube Element Outputs

The following listing provides details about the elements output variables.

Name Description Units
CROSS-SECTION: Shape of tube cross-section. (None)
LENGTH: Length of the tube. Inch, m
NUM_STATIONS: Number of stations in the tube. (None)
NUM_CIRCUMF_WALL_SEGS Number of circumferential wall segments around the tube. (None)
RI Tube inlet radius. Inch, m
RE Tube exit radius. Inch, m
K_INLET Inlet head loss (user input). (None)
FRICTION_TYPE Friction factor calculation used in the solution (DARCY, FANNING, or N/A). (None)
FRICTION Friction relation used for solution (ABAUF (Smooth Wall Power Law), SWAMEE.. (Colebrook White), or OFF). (None)
INPUT_ROUGHNESS_ TYPE Roughness input type used for solution (SAND_GRAIN, AVERAGE_ABSOLUTE, ROOT_MEAN_SQUARE, or PEAK_TO_VALLEY). (None)
K_CONTRAC_RESULT Back-calculated K loss. (unitless)
CD_RESULT Result calculated from actual mass flow rate divided by ideal mass flow rate. The ideal mass flow rate assumes either K=0, Cp=Cp_ideal, or Effec=1. (unitless)
QTOTAL Total heat change over the entire tube. Btu/s, W
PTS Driving pressure relative to the rotational reference frame (that is, rotor) at the tube inlet. psia, MPa
PTIN Total pressure relative to the rotational reference frame (that is, rotor) at the tube inlet, include supersonic effects. psia, MPa
PSIN Static pressure relative to the rotational reference frame (that is, rotor) at the tube inlet.

Limited by critical pressure ratio for supersonic flows when inlet area is smaller than exit area.

psia, MPa
PTEX Total pressure relative to the rotational reference frame (that is, rotor) at the tube exit including supersonic effects. psia, MPa
PSEX Static pressure relative to the rotational reference frame (that is, rotor) at the tube exit.

Limited by critical pressure ratio for supersonic flows.

psia, MPa
PSEB Effective sink (static) pressure downstream of the tube. psia, MPa
TTS Total temperature of fluid relative to the rotational reference frame (that is, rotor) at the tube inlet. degF, K
TSIN Static temperature of fluid relative to the rotational reference frame (that is, rotor) at the tube inlet. degF, K
INVEL Velocity of fluid relative to the rotational reference frame (that is, rotor) at the transition inlet. ft/s, m/s
TTEX Total temperature of fluid relative to the rotational reference frame (that is, rotor) at the tube exit. degF, K
TSEX Static temperature of fluid relative to the rotational reference frame (that is, rotor) at the tube exit. degF, K
EXVEL Velocity of fluid relative to the rotational reference frame (that is, rotor) at the transition exit. ft/s, m/s
Station Geometry Table of tube geometry. NONE
STA Column of stations. Station 1 is listed as “Inlet” and station NUM_STATIONS is listed as “Exit”. NONE
X Station location as a distance from the inlet. Inch, m
RADIUS Station radius from engine center line. Inch, m
HEIGHT Station height from some datum, used in gravitational effects calculations. Inch, m
DH Station hydraulic diameter. If not user input, calculated from relation: Dh = 4*A/P. Inch, m
PERIM Station wetted perimeter. If not user input, calculated from relation: P = 4*A/Dh. Inch, m
AREA Station cross-sectional area. If not user input, calculated from relation: A=Dh*P/4. in2, m2
Station Bulk Data Station-by-station fluid information. NONE
PT Fluid total pressure at station location. psia, MPa
PS Fluid static pressure at station location. psia, MPa
TT Fluid total temperature at station location. degF, K
TS Fluid static temperature at station location. degF, K
VEL Fluid velocity at station location. ft/s, m/s
THETA Fluid theta angle at station location. Will only change if there is a bend in the tube, otherwise it is the same as at “Inlet”. deg
PHI Fluid phi angle at station location. Will only change if there is a bend in the tube, otherwise it is the same as at “Inlet”. deg
REYF Fluid Reynolds number used in the friction calculation at the tube station.

R e y f = m ˙   D h A   μ f i l m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyza8aadaWgaaWcbaWdbiaadMhacaWGMbaapaqabaGc peGaeyypa0ZaaSaaa8aabaWdbiqad2gapaGbaiaapeGaaiiOaiaads eapaWaaSbaaSqaa8qacaWGObaapaqabaaakeaapeGaamyqaiaaccka cqaH8oqBpaWaaSbaaSqaa8qacaWGMbGaamyAaiaadYgacaWGTbaapa qabaaaaaaa@478A@

m ˙ = t u b e   m a s s   f l o w MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGTbWdayaacaWdbiabg2da9iaadshacaWG1bGaamOyaiaadwga caGGGcGaamyBaiaadggacaWGZbGaam4CaiaacckacaWGMbGaamiBai aad+gacaWG3baaaa@45D9@

D h = t u b e   h y d r a l i c   d i a m e t e r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabg2da9iaa dshacaWG1bGaamOyaiaadwgacaGGGcGaamiAaiaadMhacaWGKbGaam OCaiaadggacaWGSbGaamyAaiaadogacaGGGcGaamizaiaadMgacaWG HbGaamyBaiaadwgacaWG0bGaamyzaiaadkhaaaa@4E40@

A = t u b e   a r e a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbGaeyypa0JaamiDaiaadwhacaWGIbGaamyzaiaacckacaWG HbGaamOCaiaadwgacaWGHbaaaa@407A@

μ f i l m = f l u i d   v i s c o s i t y   b a s e d   o n   T f i l m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH8oqBpaWaaSbaaSqaa8qacaWGMbGaamyAaiaadYgacaWGTbaa paqabaGcpeGaeyypa0JaamOzaiaadYgacaWG1bGaamyAaiaadsgaca GGGcGaamODaiaadMgacaWGZbGaam4yaiaad+gacaWGZbGaamyAaiaa dshacaWG5bGaaiiOaiaadkgacaWGHbGaam4CaiaadwgacaWGKbGaai iOaiaad+gacaWGUbGaaiiOaiaadsfapaWaaSbaaSqaa8qacaWGMbGa amyAaiaadYgacaWGTbaapaqabaaaaa@5A4A@

T f i l m = T s + T w a l l 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbiqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGubWdamaaBaaaleaapeGaamOzaiaadMgacaWGSbGaamyBaaWd aeqaaOWdbiabg2da9maalaaapaqaa8qacaWGubWdamaaBaaaleaape Gaam4CaaWdaeqaaOWdbiabgUcaRiaadsfapaWaaSbaaSqaa8qacaWG 3bGaamyyaiaadYgacaWGSbaapaqabaaakeaapeGaaGOmaaaaaaa@454B@

Unitless
REGIME Flow regime at current station (TURB, LAM, or TRAN). NONE
RHO Fluid density at station location. lbm/ft3, kg/m3
CP Fluid specific heat at station location.

Btu/lbm-oF,

J/kg-oK

Segment Bulk Data Segment-by-segment heat addition/temperature rise results.
KSEG Head loss (K-loss) across the current segment. NONE
Q_CONV Heat added to fluid across segment due to convection. Btu/s, W
Q_FLUX Heat added to fluid across segment due to heat flux. Btu/s, W
Q_ROTA Heat added to fluid across segment due pumping. Btu/s, W
Q_GRAV Heat added to fluid across segment due to buoyancy (gravitational effects). Btu/s, W
Q_TOT Total heat added to fluid across segment. Btu/s, W
DTCONV Fluid temperature rise (or fall) across segment due to convection. degF, K
DTFLUX Fluid temperature rise (or fall) across segment due to heat flux. degF, K
DTROTA Fluid temperature rise (or fall) across segment due to pumping. degF, K
DTGRAV Fluid temperature rise (or fall) across segment due to buoyancy (gravitational effects). degF, K
DTTOT Total fluid temperature rise (or fall) across segment. degF, K
Station Data for Circumferential Wall Segment X Station-by-station data for each circumferential wall segment in the model. NONE
WFRAC Fraction of the tube circumference modeled by the current wall side segment. NONE
ARC Arc length of tube modeled by the current wall side segment. Inch, m
TWALL User defined wall temperature. degF, K
TFILM Fluid temperature used to determine fluid properties for heat transfer calculations (Cp, and so on). degF, K
TWADIAB Adiabatic wall temperature. degF, K
MU_WALL Dynamic viscosity of fluid at wall temperature, TWALL. lbm/Hr-Ft, kg/sec-m
MU_FILM Dynamic viscosity of fluid at film temperature, TFILM. lbm/Hr-Ft, kg/sec-m
COND_FILM Conductivity of the fluid at film temperature, TFILM.

Btu/hr-ft-degF,

W/m-degK

PR_FILM Prandtl number at film temperature. Unitless
RECOV Recovery factor. NONE
REYN Average fluid Reynolds number used in the HTC calculation for the tube segment. Same as REYN for an incompressible fluid. Unitless
Segment Data for Circumferential Wall Segment X Segment-by-segment (between stations) data for each circumferential wall segment in the model. NONE
SURFAREA Segment surface area =Segment Arc Length * Segment Length`. in2, m2
KSEGW Head loss (k-loss) across current segment and wall side. NONE
QCONV Heat added across segment and wall side due to convection heat transfer. Btu/s, W
QFLUX Heat added across segment and wall side due to heat flux. Btu/s, W
FR_EQ Friction equation type (MOODY, ABAUF, or OFF). NONE
SGROUGH Segment roughness, interpreted by solver according to ROUGHNESS_TYPE value. Inch, m
FMULT Friction multiplier for each segment. NONE
FRIC Friction factor value for each segment and wall side, either Fanning or Darcy depending on FRICTION_TYPE. NONE
HT_EQ Heat transfer equation used for the solution (OFF, DITBOELT (Dittus-Boelter), SIEDTATE (Sieder-Tate), GNIELINSKI, BHATSHAH(Bhatti-Shah), TURBULAT, FIX_HTC, FIX_NUSS, FIX_HEAT_FIX_DTT, FIX_TTEX, FIX_TT). NONE
HINMT HTC multiplier at inlet to the segment. NONE
HMULT HTC multiplier for the segment. NONE
NUSSLT Segment Nusselt number. UNITLESS
HTC Final calculated heat transfer coefficient for each segment.

Btu/hr-ft2-oF,

W/m2-oK

FLUID_SWIRL RPM of the fluid/SWIRL_REF_RPM. None
VEL_TAN_REL Tangential velocity relative to the surface. ft/s, m/s
VEL_EFF Effective velocity. Includes axial and tangential components. ft/s, m/s
TORQUE Torque between the surface and fluid. ft-lb, N-m

References

  1. Blevins, R. D., "Applied Fluid Dynamics Handbook", Krieger Publications, 2003.
  2. Miller, D, "Internal Flow Systems", Miller Innovations, 1990.
  3. White, Frank M., "Fluid Mechanics", 8th Ed., McGraw - Hill, 2015.
  4. Incropera, F. and Dewitt, D. "Fundamentals of Heat and Mass Transfer", 6th Edition, John Wiley & Sons, 2006.
  5. Kreyszig, E., "Advanced Engineering Mathematics", 8th Ed., John Wiley & Sons, 1999.
  6. Rhode, J. E., H. T. Richards and G. W. Metger, "Discharge Coefficients for Thick Plate Orifices with Approach Flow Perpendicular and Inclined to the Axis", NASA TN D-5467, October 1969.
  7. Friedel L., “Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow”, In European Two-Phase Group Meeting, Ispra, Italy, Paper E2, 1979.
  8. Gazley, C.: 'Heat Transfer Characteristics of rotating and axial flow between concentric cylinders', Trans ASME, Jan 1958, pp.79-89.