References

  1. Anderson, John D., Fundamentals of Aerodynamics, 6th Ed., McGraw - Hill, 2016.
  2. NACA Report 1135, Equations, Tables and Charts for Compressible Flow, Ames Research Staff, Ames Aeronautical Laboratory, California, 1953.
  3. White, Frank M., Fluid Mechanics, 8th Ed., McGraw - Hill, 2015.
  4. Incropera, F. and Dewitt, D. Fundamentals of Heat and Mass Transfer, 6th Edition, John Wiley & Sons, 2006.
  5. Harvey et al., ASME International Steam Tables for Industrial Use, 3rd Ed., ASME Press.
  6. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, 1960.
  7. Chapman, S. and Cowling, T. G., The mathematical theory of non- uniform gases, 3rd Ed., Cambridge University Press, 1970.
  8. Buddenberg, J. W. and Wilke, C. R., Calculation of Gas Mixture Viscosities, Ind. Eng. Chem., vol. 41, no. 7, pp. 1345-1347, 1949.
  9. Lindsay, A. L. and Bromley, L. A., Thermal Conductivity of Gas Mixtures, Industrial and Engineering Chemistry, 42, pp. 1508, 1950.
  10. Hubbartt, J. E., H. O. Sloan and V. L. Arne, Method for Rapid Determination of Pressure Change for One-dimensional Flow With Heat Transfer, Friction, Rotation, and Area Change, NACA TN 3150, June 1954.
  11. Rhode, J. E., H. T. Richards and G. W. Metger, Discharge Coefficients for Thick Plate Orifices With Approach Flow Perpendicular and Inclined to the Axis, NASA TN D-5467, October 1969.
  12. Swamee, P., Jain, A., Explicit equations for pipe-flow problems, Journal of the Hydraulics Division (ASCE), 102 (5), pp. 657–664, 1976.
  13. Moody, L., Friction Factors for Pipe Flow, Transactions of the ASME, 66, 8, pp. 671–684, November 1944.
  14. Colebrook, C., Turbulent Flow in Pipes, with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws, Journal of the Institution of Civil Engineers, London, 11, pp. 133–156, 1938–39.
  15. Blevins, R. D., Applied Fluid Dynamics Handbook, Krieger Publications, 2003.
  16. Miller, D, Internal Flow Systems, Miller Innovations, 1990.
  17. Kays, W.M. and Crawford, M.E., Convective Heat and Mass Transfer, 3rd Edition, McGraw-Hill Inc., p 249, 1993.
  18. Gritsc, M., Schulz, A., Wittig, S., Effect of Cross flows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation, Journal of Turbo machinery, Vol-123, p781-787, Year-2001.
  19. Idris, A. , Pullen, K.R., Read, R., The influence of incidence angle on the discharge coefficient for rotating radial orifices, Proceedings of ASME Turbo Expo 2004, Power for Land, Sea, and Air, GT2004-53237, June 14-17, 2004, Vienna, Austria.
  20. Idris, A. , Pullen, K.R., Correlations for the discharge coefficient of rotating orifices based on the incidence angle, Proceedings of IMechE, Part A: J. Power and Energy, Vol-219, Year-2005.
  21. Rhode, J.E., Richards, H.T., Metger, G.IV., Discharge coefficients for thick plate orifices with approach flow perpendicular and inclined to the orifice axis, NASA technical note, NASA TN D-5467.
  22. Dittmann, M., Geis, T., Schramm, V., Kim, S., Wittig, S., Discharge Coefficients of a Pre-swirl System in Secondary Air Systems, Journal of Turbo machinery, Vol-124 p119-124, Year-2002.
  23. Dittmann, M., Dullenkopf, K., Wittig, S., Discharge Coefficients of Rotating Short Orifices With Radiused and Chamfered Inlets, Journal of Engineering for Gas Turbines and Power, Vol-126, p803-808, Year-2004.
  24. Wittig, S., Kim, S., Scherer, T., Weissert, I., Numerical Study for Optimizing Heat Transfer in High Speed Rotating Components, International Journal of Rotating Machinery, Vol-4, No. 3, pp. 151-161, Year-1998.
  25. Lewis, P., Wilson, M., Lock, G., Owen, J.M., Physical Interpretation of Flow and Heat Transfer in Preswirl Systems, Journal of Engineering for Gas Turbines and Power, Vol-129 p769-777, Year-2007.
  26. Vermes, Geza, “A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem,” Transactions of the ASME, Journal of Engineering for Power, April 1961, pp161-169.
  27. von Karman, T., On Laminar and Turbulent Friction, 1921 (NACA TM 1092, 1945).
  28. Da Soghe, R., Facchini, B., Innocenti L. and Micio, M., Analysis of Gas Turbine Rotating Cavities by a One-Dimensional Model: Definition of New Disk Friction Coefficient Correlations Set, ASME Journal of Turbomachinery, Vol 133, 2011.
  29. Da Soghe, R., Innocenti L., Andreini A., and Poncet, S., Numerical benchmark of turbulence modeling in gas turbine rotor-stator system, ASME Turbo Expo 2010, GT2010-22627, 2010.
  30. Da Soghe, R., Facchini, B., Innocenti L. and Micio, M., Some Improvements in a Gas Turbine Stator-Rotor Systems Core-Swirl Ratio Correlation, International Journal of Rotating Machinery, Volume 2012, Article ID 853767, 2012.
  31. Owen, J.M. and Pincombe, J.R., Velocity measurements inside a rotating cylindrical cavity with a radial outflow of fluid, Journal of Fluid Mechanics, Vol. 99(1), pages 111 – 127, 1980.
  32. Owen, J.M., Pincombe, J.R. and Rogers R. H., Source-sink flow inside a rotating cylindrical cavity, Journal of Fluid Mechanics, Vol. 155(1), pages 233 – 265, 1985.
  33. Gordon, S., McBride, B.J., Computer program for calculation of complex chemical equilibrium compositions and applications, NASA Technical Reports, 1994.
  34. Kreyszig, E., Advanced Engineering Mathematics, 8th Ed., John Wiley & Sons, 1999.
  35. Brown, B.W., Rossbach, R.J., Numerical solution of equations for one-dimensional gas flow in rotating coolant passages, NACA Research Memorandum E50E04, Lewis Flight Propulsion Lab, Cleveland, Ohio, USA, 1950.
  36. Gnielinski, V., New equations for heat and mass transfer in the turbulent flow in pipes and channels, (Jahrestreffen der Verfahrensingenieure, Berlin, West Germany, Oct. 2-4, 1973.) Forschung im Ingenieurwesen, vol. 41, no. 1, 1975, p. 8-16. In German.
  37. Bhatti, M.S., Shah, R.K., Turbulent and transitional flow convective heat transfer, Hand Book of Single-phase Convection Heat Transfer, John Wiley & Sons, 1987.
  38. Wilson, W., Performance criteria for positive displacement pumps and fluid motors, ASME Semi-annual Meeting, paper No.48-SA-14, 1948.
  39. Hydrodynamic Plain Journal Bearings under Steady-State Conditions - Circular Cylindrical Bearings, International Standards Organization (ISO), ISO 7902-1, 2013.
  40. Pinkus, C. and Sternlicht, B., Theory of Hydrodynamic Lubrication, McGraw-Hill, 1961.
  41. Araki, M, PID Control, Control Systems, Robotics, and Automation , Vol. II, 2009.
  42. Daily, J.W., Nece, R.E., Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks, Journal of Basic Engineering, pp. 217-230, 1960.
  43. Zimmermann, H., Firsching, A., Dibelius, G. H., and Ziemann, M., Friction Losses and Flow Distributions for Rotating Disks With Shielded and Protruding Bolts, ASME Journal of Engineering for Gas Turbines and Power, Vol. 108, No. 3, pp. 547-552, 1986.
  44. Chupp, R, E., Holle, G, F., Generalized circular brush seal leakage through randomly distributed bristle bed, J. Turbomachinery, 118, 1996.
  45. Chupp, R, E., Holle, G, F., Simple effective thickness model for circular brush seals, 28th Joint Propulsion conference, 1992.
  46. Chupp, R, E., Nelson, P., Evaluation of brush seals for limited life engines, Journal of Propulsion and Power, 9 (1), 1993.
  47. Alexiou, A. and Mathioudakis, K., Secondary Air System Component Modeling for Engine Performance Simulations, Journal of Engineering and Gas Turbines Power, 131 (3), February 2009.
  48. Neelesh, S., Wolfe, C., Sezer, I., Ziegler, R., Chupp, R., Chaterterization of metallic W-seals for inner to outer shroud sealing in industrial gas turbines, Proc. ASME Turbo Expo 2012, GT2012-68131.
  49. Shah, R. K., & Sekulic, D. P., Heat Exchangers in Handbook of Heat Transfer, Chap. 17.
  50. Muzychka, Y. S., and Yovanovich, M. M., 2004, Laminar Forced Convection Heat Transfer in Combined Entry region of Non-Circular Ducts, Journal of Heat Transfer, Transactions of ASME, Vol. 126, pp. 54–61.
  51. Muzychka, Y.S., and Kenway, G. 2009., A Model for Thermal-Hydraulic Characteristics of Offset Strip Fin Arrays for Large Prandtl Number Liquids, Journal of Enhanced Heat Transfer, 16, 73-92.
  52. C.J.Davenport, Correlation for heat transfer and flow friction characteristics of louvered fin, AIChE Syrup. Ser. 79, 19-27 (1983).
  53. Lapides, M., and Goldstein, M. HEAT TRANSFER SOURCE FILE DATA. APEX 425 United States: N. p., 1957. Web., Fig. 31 pg. 62.
  54. Kreith, F. and Black, W., Basic Heat Transfer, 1980, Equation 5.14.
  55. Lienhard,John A Heat Transfer Textbook, 4th Edition, Eq 7.49.
  56. Chapman, A., Fundamentals of Heat Transfer, Macmillan, 1987. Equation 6.23, page 323.
  57. Churchill, S.W.; Bernstein, M. (1977) A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow, J. Heat Transfer, Trans. ASME 99: 300-306.
  58. Holman, J., Heat Transfer, 8th Ed, Pg. 306.
  59. McAdams, W., Heat Transmission, 3rd Ed. McGraw-Hill, NY, 1954, Equation 7-4a, Pg. 172.
  60. Fujii, T. and Imura, H., Natural Convection Heat Transfer from a Plate with Arbitrary Inclination, International Journal of Heat and Mass Transfer. Vol. 15, page 755. 1972.
  61. Lloyd, J. and Moran, W., Natural Convection Adjacent to Horizontal Surface of Various Planforms, ASME Paper 74-WA / HT-66.
  62. Fishenden, M., and Saunders, O., An Introduction to Heat Transfer, Oxford University Press, London, 1950.
  63. Adams, T., and Grant, C., Watson, H., A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-grain Roughness, International Journal of Mechanical Engineering and Mechatronics, Vol 1, Issue 1, 2012.
  64. Friedel L., Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow, In European Two-Phase Group Meeting, Ispra, Italy, Paper E2, 1979.