/FAIL/TAB2

Block Format Keyword This advanced failure model allows the plastic strain at failure to be defined as a function of stress triaxiality, strain rate, Lode angle, element size, and temperature.

A coupling with stress computation generating a stress softening is also available through different features. It can be fully coupled or triggered by other phenomena like instability strain to control necking. Damage is accumulated based using an exponent evolution. This criterion is compatible with both solids and shells and can be used with non-local regularization.

Format

Card 1 - Plastic strain at failure definition and element deletion control
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/FAIL/TAB2/mat_ID/unit_ID
EPSF_ID FCRIT   FAILIP PTHICKFAIL
Card 2 - Damage accumulation and stress softening trigger parameters
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
N DCRIT INST_ID ECRIT
Card 3 - Stress softening exponent parameter
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
FCT_EXP EXP_REF EXP
Card 4 - Element size scale function
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
TAB_EL IREG EL_REF SR_REF1 FSCALE_EL
Card 5 - Element size scaling boundaries
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
SHRF BIAXF
Card 6 - Strain rate dependency definition
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
FCT_SR SR_REF2 FSCALE_SR C_JCOOK
Card 7 - Damage limit function
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
FCT_DLIM FSCALE_DLIM
Card 8 - Optional line
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fail_ID        

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit Identifier.

(Integer, maximum 10 digits)

EPSF_ID Plastic strain at failure table identifier.

(Integer)

FCRIT Scale factor for failure plastic strain table.

Default = 1.0 (Real)

FAILIP Number of failed integration point prior to solid element deletion.

Defaut = 1 (Integer)

PTHICKFAIL Percentage of failed layers prior to shell element deletion.

Default = 0.0 (Real)

N Damage accumulation exponent.

Default = 1.0 (Real)

DCRIT Critical damage for stress softening triggering.

Default = 0.0 (Real)

INST_ID Instability (necking) plastic strain table identifier.

(Integer)

ECRIT Scale factor for necking plastic strain table identifier.

(Real)

FCT_EXP Stress softening exponent function identifier.

(Integer)

EXP_REF Reference element size for stress softening exponent function.

Default = 1.0 (Real)

[ m ]
EXP Scale factor for stress softening exponent function.

Default = 1.0 (Real)

TAB_EL Element size scaling table identifier.

(Integer)

IREG Element size regularization flag.
= 1 (Default)
Scale factor versus element size versus strain rate.
= 2
Scale factor versus element size versus triaxiality.

(Integer)

EL_REF Reference element size for size scaling table.

Default = 1.0 (Real)

[ m ]
SR_REF1 Reference strain rate for size scaling table.

Default = 1.0 (Real)

[ 1 s ]
FSCALE_EL Scale factor for element size scaling function.

Default = 1.0 (Real)

SHRF Lower stress triaxiality boundary for element size scaling.

Default = -1.0 (Real)

BIAXF Upper stress triaxiality boundary for element size scaling.

Default = 1.0 (Real)

[ 1 s ]
FCT_SR Strain rate dependency function identifier.

(Integer)

SR_REF2 Reference strain rate for strain rate dependency function.

Default = 1.0 (Real)

[ 1 s ]
FSCALE_SR Scale factor for strain rate dependency function.

Default = 1.0 (Real)

C_JCOOK Johnson-Cook strain rate dependency factor.

Default = 0.0 (Real)

FCT_DLIM Damage limit function identifier.

(Integer)

FSCALE_DLIM Damage limit function scale factor.

Default = 1.0 (Real)

fail_ID (Optional) Failure criteria identifier. 9

(Integer, maximum 10 digits)

Example (Steel)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
#              MUNIT               LUNIT               TUNIT
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/PLAS_JOHNS/1/1
Steel
#              RHO_I
              7.8E-6                   0
#                  E                  Nu     Iflag
                 210                  .3         0
#                  a                   b                   n           EPS_p_max            SIG_max0
                  .4                  .5                  .5                   0                   0
#                  c           EPS_DOT_0       ICC   Fsmooth               F_cut               Chard
                   0                   0         0         0                   0                   0
#                  m              T_melt              rhoC_p                 T_r
                   0                   0                   0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FAIL/TAB2/1/1
#  EPSF_ID               FCRIT              FAILIP          PTHICKFAIL
        52                 0.9                   0                 1.0
#                  N               DCRIT   INST_ID               ECRIT
                 2.0                   0        53                 0.5                          
#  FCT_EXP             EXP_REF                 EXP
         0                   0                 2.5      
#   TAB_EL      IREG              EL_REF             SR_REF1           FSCALE_EL
         0         0                   0                   0                   0
#               SHRF               BIAXF
                   0                   0
#   FCT_SR             SR_REF2           FSCALE_SR             C_JCOOK
         0                   0                   0                   0                  
# FCT_DLIM         FSCALE_DLIM
         0                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/52
epsf vs triax
              -0.333         3.009955556
                -0.3	        2.728211
               -0.25	      2.33840625
                -0.2	        1.987976
               -0.15	      1.67692025
                -0.1	        1.405239
               -0.05	      1.17293225
                   0	            0.98
                0.05	      0.82644225              
                 0.1	        0.712259
                0.15	      0.63745025
                 0.2	        0.602016
                0.25	      0.60595625
                 0.3	        0.649271
               0.333         0.700985898
                0.35	     0.663237826
                 0.4	     0.567983816
                0.45	     0.496266718
                 0.5	     0.448086532
                0.55	     0.423443259
               0.577	     0.419921961
                 0.6	     0.428924499
               0.625	     0.459765672
                0.65         0.512542413
               0.666	     0.559913333
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/53
               0.333         0.700985898
                0.35         0.647131801
                 0.4         0.511235623
                0.45         0.408918886
                 0.5          0.34018159
                0.55         0.305023734
         0.577350269                 0.3
                 0.6         0.316714456
               0.625         0.373975356
                0.65         0.471962671
         0.666666667         0.559913333
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The /FAIL/TAB2 failure criterion is a tabulated criterion that offers you the freedom to define your own map of plastic strain at failure with stress triaxiality, Lode parameter and other dependency. This plastic strain at failure is used to compute a damage variable evolution described below. This criterion also offers the possibility to generate a stress softening effect with the damage computation as:(1)
    σ = σ e f f 1 D D c r i t 1 D c r i t E X P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0Jaeq4Wdm3aaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaGcdaqa daqaaiaaigdacqGHsisldaqadaqaamaalaaabaGaamiraiabgkHiTi aadseadaWgaaWcbaGaam4yaiaadkhacaWGPbGaamiDaaqabaaakeaa caaIXaGaeyOeI0IaamiramaaBaaaleaacaWGJbGaamOCaiaadMgaca WG0baabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadweacaWG ybGaamiuaaaaaOGaayjkaiaawMcaaaaa@51DA@
    Where,
    σ
    Damaged stress tensor.
    σ e f f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadwgacaWGMbGaamOzaaqabaaaaa@3AA3@
    Undamaged effective stress tensor.
    D c r i t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGJbGaamOCaiaadMgacaWG0baabeaaaaa@3AAE@
    Critical damage value that triggers stress softening.
    E X P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiaadI facaWGqbaaaa@386F@
    Exponent parameter.
  2. To use /FAIL/TAB2, it is required to define a plastic strain at failure used to compute the damage accumulation presented below. It can be either constant using FCRIT parameter alone or tabulated if EPSF_ID table identifier is specified. The tabulated plastic strain at failure is defined with respect to stress triaxiality, Lode parameter and temperature ε p f ( η , ξ , T ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadchaaeaacaWGMbaaaOGaaiikaiabeE7aOjaacYcacqaH +oaEcaGGSaGaamivaiaacMcaaaa@40B3@ (Figure 1).
    If EPSF_ID is defined, FCRIT becomes a scale factor to quickly increase or decrease the entire plastic strain at failure map.
    Figure 1. Tabulated failure criterion map showing the evolution of plastic strain at failure with respect to stress triaxiality and Lode parameter
  3. FAILIP is an integer value that is used only with higher order or fully-integrated solid elements. It defines the number of failed integration points prior to solid element deletion.
  4. PTHICKFAIL parameter is a real parameter used for shell elements. If PTHICKFAIL is blank or set to 0.0, the value of PTHICKFAIL from the shell property is used. If PTHICKFAIL > 0.0, any PTHICKFAIL value defined in the shell properties are ignored and the value entered in this failure model is used.

    For values of PTHICKFAIL > 0.0, shell elements fail and are deleted when the ratio of through thickness failed integration points equals or exceeds PTHICKFAIL.

  5. The damage variable evolution is given by:(2)
    D = t = 0 Δ ε p ε p f ( η , ξ , T ) f c r i t n D 1 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maaqahabaWaaSaaaeaacqGHuoarcqaH1oqzdaWgaaWcbaGaamiC aaqabaaakeaacqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadAgaaaGcca GGOaGaeq4TdGMaaiilaiabe67a4jaacYcacaWGubGaaiykaiabgwSi xlaabAgadaWgaaWcbaGaam4yaiaadkhacaWGPbGaamiDaaqabaaaaa qaaiaadshacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGH flY1caWGUbGaeyyXICTaamiramaaCaaaleqabaWaaeWaaeaacaaIXa GaeyOeI0YaaSaaaeaacaaIXaaabaGaamOBaaaaaiaawIcacaGLPaaa aaaaaa@5FC7@

    The parameter N then allows you to change the shape of the damage evolution with plastic strain shape from linear (N = 1, set by default) to nonlinear (N ≠ 1) (Figure 2(a)). An increase of N also creates a delay of the stress softening effect (Figure 2(b)).

    Figure 2. Effect of parameter N on the damage variable evolution and the stress softening effect
  6. The DCRIT parameter allows you to define a damage variable trigger value for stress softening (Figure 3). By default DCRIT = 0.0, which means that damage variable always has an effect on stress computation, generating a softening effect from the beginning of the plasticity. However, you may want to delay this stress softening effect to a higher value of damage variable (0 < D < 1) or cut the effect of stress softening to obtain a fully failure criterion approach where elements lose their load carrying capacity when damage reaches the value 1.
    Figure 3. Effect of parameter DCRIT on the stress softening effect
  7. Instead of using a constant value of DCRIT to trigger stress softening, a necking control process can be used. This is defined using the parameter INST_ID and/or ECRIT. The definition of those parameters will imply the computation of another variable evolution called instability variable and denoted f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36DE@ : (3)
    f = t = 0 Δ ε p ε p i n s t ( η , ξ , T ) E c r i t n f 1 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2 da9maaqahabaWaaSaaaeaacqGHuoarcqaH1oqzdaWgaaWcbaGaamiC aaqabaaakeaacqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadMgacaWGUb Gaam4CaiaadshaaaGccaGGOaGaeq4TdGMaaiilaiabe67a4jaacYca caWGubGaaiykaiabgwSixlaadweadaWgaaWcbaGaam4yaiaadkhaca WGPbGaamiDaaqabaaaaaqaaiaadshacqGH9aqpcaaIWaaabaGaeyOh IukaniabggHiLdGccqGHflY1caWGUbGaeyyXICTaamOzamaaCaaale qabaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamOB aaaaaiaawIcacaGLPaaaaaaaaa@62D3@

    The evolution of this instability variable is similar to the damage variable but represents the criterion to reach to trigger stress softening, implying the start of the strain localization and then necking especially observed at high stress triaxiality. When the criterion is reached ( f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36DE@ = 1), the instant value taken by the damage variable D is saved in the value DCRIT, which becomes an element history variable and not a constant value. In this case, the DCRIT value defined in the input card is ignored.

    D = Δ D f = Δ f D c r i t = 1 while f < 1 D when f 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGeb Gaeyypa0Zaa8qaaeaacqGHuoarcaWGebaaleqabeqdcqGHRiI8aaGc baGaamOzaiabg2da9maapeaabaGaeyiLdqKaamOzaaWcbeqab0Gaey 4kIipaaOqaaiaadseadaWgaaWcbaGaam4yaiaadkhacaWGPbGaamiD aaqabaGccqGH9aqpdaGabaqaauaabeqaceaaaeaafaqabeqadaaaba GaaGymaaqaaiaabEhacaqGObGaaeyAaiaabYgacaqGLbaabaGaamOz aiabgYda8iaaigdaaaaabaqbaeqabeWaaaqaaiaadseaaeaacaqG3b GaaeiAaiaabwgacaqGUbaabaGaamOzaiabgwMiZkaaigdaaaaaaaGa ay5Eaaaaaaa@5957@

    ECRIT allows you to define a constant necking plastic strain. However, the necking plastic strain can be defined with a table INST_ID depending on stress triaxiality, Lode parameter and temperature. In this case, ECRIT becomes a scale factor for the instability plastic strain table. The instability plastic strain must be lower than failure plastic strain to have a visible effect (Figure 4).
    Figure 4. Necking plastic strain curve (blue) and failure plastic strain curve (red)
  8. Even if the shape of the damage accumulation can be controlled with parameter N, another non-linearity in stress softening can be defined with the exponent EXP (Figure 5). This exponent can be constant if EXP parameter is defined alone or can evolve with element size if FCT_EXP is specified. If the function is used, EXP_REF is the element reference size and EXP becomes a scale factor. By default, EXP is set to 1.0 leading to a linear decrease.
    Figure 5. Effect of exponent parameter EXP on the stress softening shape
  9. Element size scaling can be used to regularize the failure and ensure an almost constant fracture energy dissipated with different mesh sizes is obtained. This element size dependency is introduced by computing a size scale factor denoted f s i z e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOzamaaBa aaleaacaWGZbGaamyAaiaadQhacaWGLbaabeaaaaa@3AD8@ defined by the table TAB_EL. The dependencies of these tables depend on the value of the IREG flag:
    • IREG = 1: the table defines the evolution of the element size scaling factor with respect to initial element size and strain rate f s i z e L e L r e f , ε ˙ ε ˙ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOzamaaBa aaleaacaWGZbGaamyAaiaadQhacaWGLbaabeaakmaabmaabaWaaSaa aeaacaWGmbWaaSbaaSqaaiaadwgaaeqaaaGcbaGaamitamaaBaaale aacaWGYbGaamyzaiaadAgaaeqaaaaakiaacYcadaWcaaqaaiqbew7a LzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGimaaqabaaaaaGcca GLOaGaayzkaaaaaa@474E@ . In this case, EL_REF is the reference element size L r e f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGYbGaamyzaiaadAgaaeqaaaaa@39BC@ , and SR_REF1 is the reference strain rate ε ˙ 0 .
    • IREG = 2: the table defines the evolution of the element size scaling factor with respect to initial element size and stress triaxiality f s i z e L e L r e f , η MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOzamaaBa aaleaacaWGZbGaamyAaiaadQhacaWGLbaabeaakmaabmaabaWaaSaa aeaacaWGmbWaaSbaaSqaaiaadwgaaeqaaaGcbaGaamitamaaBaaale aacaWGYbGaamyzaiaadAgaaeqaaaaakiaacYcacqaH3oaAaiaawIca caGLPaaaaaa@449A@ . In this case, EL_REF is the reference element size L r e f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaBa aaleaacaWGYbGaamyzaiaadAgaaeqaaaaa@39BC@ , and SR_REF1 is ignored.
    In both cases, FSCALE_EL is a scale factor that quickly increases or decreases the values of the entire table. The element size scale factor thus computed is introduced in the damage variable evolution equation (and if defined, the instability variable evolution equation) as: (4)
    D = t = 0 Δ ε p ε p f ( η , ξ , T ) f c r i t f s i z e n D 1 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maaqahabaWaaSaaaeaacqGHuoarcqaH1oqzdaWgaaWcbaGaamiC aaqabaaakeaacqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadAgaaaGcca GGOaGaeq4TdGMaaiilaiabe67a4jaacYcacaWGubGaaiykaiabgwSi xlaabAgadaWgaaWcbaGaam4yaiaadkhacaWGPbGaamiDaaqabaGccq GHflY1caqGMbWaaSbaaSqaaiaadohacaWGPbGaamOEaiaadwgaaeqa aaaaaeaacaWG0bGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aO GaeyyXICTaamOBaiabgwSixlaadseadaahaaWcbeqaamaabmaabaGa aGymaiabgkHiTmaalaaabaGaaGymaaqaaiaad6gaaaaacaGLOaGaay zkaaaaaaaa@66FF@
    Note: If IREG = 1 is used, the element size scaling can be turned off, if the stress triaxiality is lower than the boundary SHRF, or is higher than the boundary BIAXF.
  10. A strain rate dependency can be also applied to the failure criterion. This dependency can be introduced in two different ways:
    • If FCT_SR ≠ 0, a tabulated function of the strain rate dependency factor f r a t e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOzamaaBa aaleaacaWGYbGaamyyaiaadshacaWGLbaabeaaaaa@3AC9@ is used. In this case, you must define a function to describe the evolution of the strain rate factor (denoted f r a t e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOzamaaBa aaleaacaWGYbGaamyyaiaadshacaWGLbaabeaaaaa@3AC9@ ) with the strain rate. You can also input a reference strain rate SR_REF2 denoted ε ˙ 0 in the equation, and a scale factor. Using the tabulated strain rate dependency, the damage variable computation (and if defined, the instability variable evolution equation) becomes:(5)
      D = t = 0 Δ ε p ε p f ( η , ξ , T ) f c r i t f r a t e ε ˙ ε ˙ 0 n D 1 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maaqahabaWaaSaaaeaacqGHuoarcqaH1oqzdaWgaaWcbaGaamiC aaqabaaakeaacqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadAgaaaGcca GGOaGaeq4TdGMaaiilaiabe67a4jaacYcacaWGubGaaiykaiabgwSi xlaabAgadaWgaaWcbaGaam4yaiaadkhacaWGPbGaamiDaaqabaGccq GHflY1caqGMbWaaSbaaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeqa aOWaaeWaaeaadaWcaaqaaiqbew7aLzaacaaabaGafqyTduMbaiaada WgaaWcbaGaaGimaaqabaaaaaGccaGLOaGaayzkaaaaaaWcbaGaamiD aiabg2da9iaaicdaaeaacqGHEisPa0GaeyyeIuoakiabgwSixlaad6 gacqGHflY1caWGebWaaWbaaSqabeaadaqadaqaaiaaigdacqGHsisl daWcaaqaaiaaigdaaeaacaWGUbaaaaGaayjkaiaawMcaaaaaaaa@6CEE@
    • If C J C 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGkbGaam4qaaqabaGccqGHGjsUcaaIWaaaaa@3B0A@ , the Johnson-Cook strain rate dependency is used and SR_REF2 becomes the reference strain rate ε ˙ 0 . In this case, the plastic strain at failure value is multiplied by the strain rate dependency factor as:(6)
      D = t = 0 Δ ε p ε p f ( η , ξ , T ) f c r i t 1 + C J C ln ε ˙ ε ˙ 0 + n D 1 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maaqahabaWaaSaaaeaacqGHuoarcqaH1oqzdaWgaaWcbaGaamiC aaqabaaakeaacqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadAgaaaGcca GGOaGaeq4TdGMaaiilaiabe67a4jaacYcacaWGubGaaiykaiabgwSi xlaabAgadaWgaaWcbaGaam4yaiaadkhacaWGPbGaamiDaaqabaGccq GHflY1daqadaqaaiaaigdacqGHRaWkcaWGdbWaaSbaaSqaaiaadQea caWGdbaabeaakmaaamaabaGaciiBaiaac6gadaWcaaqaaiqbew7aLz aacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGimaaqabaaaaaGccaGL PmIaayPkJaWaaSbaaSqaaiabgUcaRaqabaaakiaawIcacaGLPaaaaa aaleaacaWG0bGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGa eyyXICTaamOBaiabgwSixlaadseadaahaaWcbeqaamaabmaabaGaaG ymaiabgkHiTmaalaaabaGaaGymaaqaaiaad6gaaaaacaGLOaGaayzk aaaaaaaa@710D@
      Where,
      ε ˙ 0
      Inviscid limit strain rate.
      C J C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGkbGaam4qaaqabaaaaa@387F@
      Strain rate dependency parameter.
      + MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaaWaaeaaai aawMYicaGLQmcadaWgaaWcbaGaey4kaScabeaaaaa@38D2@
      Macaulay brackets, which consider only positive values.

      If you are using a Johnson-Cook material law coupled to the /FAIL/TAB2 criterion, the Johnson-Cook parameters used for the constitutive law might not be the same for the failure criterion. The reference strain rate used in the presented equation is different from the one used for element size scaling when IREG = 1.

      Important: The strain rate dependency applied to the failure criterion can only be used with material laws that are strain rate dependent. The strain rate used for the constitutive law (total strain rate, deviatoric strain rate or plastic strain rate), will be the same used for the failure criterion.
  11. The stress softening can be restricted to a given range of stress triaxiality. To do so, a damage limit value (lower than 1 for which the element has lost its load carrying capacity) evolving with stress triaxiality may be defined using the function FCT_DLIM. Values taken by this function must be taken between 0 and 1. A scale factor can be used to quickly increase or decrease the entire function values.
  12. If the non-local regularization is used (/NONLOCAL/MAT), the non-local plastic strain is used to compute the damage evolution (and the instability variable if used). In that case, if an element size scaling is defined through TAB_EL or an element size dependent exponent parameter function FCT_EXP is used, the maximum non-local length parameter LE_MAX is used instead of the initial element size.