Beam Failures

The Beam config has 2 subtypes: Beam_member and Beam_shell. The first is made of 1D elements while the second points to freebody sections. Both configs come with their flavor of the same actual methods:
  1. Stringer Axial Stress
  2. Stringer compressive buckling

The Stinger Axial Stress is a simple method which calculates the Compressive/Tensile margin of safety as:

MS= [(Compressive Stress limit)*(section Area)/(Axial Force)] -1; (resp. Tensile Stress limit)

In the case of freebody sections, Axial Force is mapped to the freebody resultant Fx.

The compressive buckling method evaluates M S = F c c / σ x 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaado facqGH9aqpcaWGgbWaaSbaaSqaaiaadogacaWGJbaabeaakiaac+ca cqaHdpWCdaWgaaWcbaGaamiEaaqabaGccqGHsislcaaIXaaaaa@40C8@ with:
  • σ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadIhaaeqaaaaa@38E2@ : average axial stress as (Axial Force)/(Section’s area)
  • F cc = F cy *(1.272(L'/ρ)/π* E/ F cy ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGJbGaam4yaaqabaGccqGH9aqpcaWGgbWaaSbaaSqaaiaa dogacaWG5baabeaakiaacQcacaGGOaGaaGymaiabgkHiTiaac6caca aIYaGaaG4naiaaikdacaGGOaGaamitaiaacEcacaGGVaGaeqyWdiNa aiykaiaac+cacqaHapaCcaGGQaWaaOaaaeaacaWGfbGaai4laiaadA eadaWgaaWcbaGaam4yaiaadMhaaeqaaaqabaGccaGGPaaaaa@5028@
  • F c y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGJbGaamyEaaqabaaaaa@38D3@ : material compressive stress limit
  • L ' = ( structural property L e n g t h ) / K_constraint MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacE cacqGH9aqpcaGGOaGaae4CaiaabshacaqGYbGaaeyDaiaabogacaqG 0bGaaeyDaiaabkhacaqGHbGaaeiBaiaaysW7caqGWbGaaeOCaiaab+ gacaqGWbGaaeyzaiaabkhacaqG0bGaaeyEaiaaygW7caaMb8UaaGjb VlaadYeacaWGLbGaamOBaiaadEgacaWG0bGaamiAaiaacMcacaGGVa WaaOaaaeaacaqGlbGaae4xaiaabogacaqGVbGaaeOBaiaabohacaqG 0bGaaeOCaiaabggacaqGPbGaaeOBaiaabshaaSqabaaaaa@6274@
    • K_constraint = “constraint coefficient” on structural property. Def=0.0699
  • ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@37B6@ : beam section’s radius of gyration
  • E: material young’s modulus