References

Alkin, B., Furst, A., Schmid, S., Gruber, L., Holzleitner, M., & Brandstetter, J. (2025). Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators. arXiv.

Ahmed, E., Saint, A., Shabayek, A. E. R., Cherenkova, K., Das, R., Gusev, G., Aouada, D., & Ottersten, B. (2018). A survey on Deep Learning Advances on Different 3D Data Representations. arXiv. https://doi.org/https://doi.org/10.48550/arXiv.1808.01462

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2016). Geometric deep learning: going beyond Euclidean data. arXiv. https://doi.org/https://doi.org/10.48550/arXiv.1611.08097

Fioresi, R., & Zanchetta, F. (2023). Deep Learning and Geometric Deep Learning: an introduction for mathematicians and physicists. arXiv. https://doi.org/ https://doi.org/10.48550/arXiv.2305.05601

Lino, M., Fotiadis, S., Bharath, A. A., & Cantwell, C. D. (2023). Current and emerging deep-learning methods for the simulation of Fluid Dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2275). https://doi.org/10.1098/rspa.2023.0058

Vaswani, A., Shazeer, N., Parmer, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2023). Attention Is All You Need. arXiv.

Wen, S., Kumbhat, A., Lingsch, L., Mousavi, S., Zhao, Y., Chandrashekar, P., & Mishra, S. (2025). Geometry Aware Operator Transformer As An Efficient And Accurate Neural Surrogate For PDEs On Arbitrary Domains. arXiv.

Wu, H., Luo, H., Wang, H., Wang, J., & Long, M. (2024). Transolver: A Fast Transformer Solver for PDEs on General Geometries. arXiv.