/H3D/NODA

Engine Keyword Generate H3D contour output results for nodes.

Format

/H3D/NODA/Keyword3/Keyword4

#optional next line(s) that lists the parts to save results for.

part_ID1 ... part_IDN

Example

Node velocity vectors
/H3D/NODA/VEL
Contact pressure for only parts IDs 356 and 293.
/H3D/NODA/PCONT
356 293

Definition

Field Contents SI Unit Example
Keyword3 Output types. 2  
Keyword4 Output types. 2  
part_IDN Optional list of part IDs for which results will be output.  

Comments

  1. When PART IDs are listed after the /H3D/NODA line the specified results will only be output for those parts.
  2. Output can be a, scalar, vector, or tensor as defined.
    Table 1. Scalar Output
    Keyword3 Keyword4 Description
    CSE_FRIC None Nodal surface contact frictional energy (sum of all interfaces energy per unit of area).

    Not available for Edge to Edge contact.

    INTER=
    I or ALL
    Nodal surface contact frictional energy for the defined interface (energy per unit of area).

    Not available for Edge to Edge contact.

    DAMA2   Damage for TYPE2 interface. 3
    DENS   Element density extrapolated to attached nodes for 3D ALE and FVM nodes of external and internal airbag surfaces.
    DINER   Nodal inertia change 4
    DMASS   Nodal mass change. 5
    DT   Nodal time step
    ENER   Element specific energy reported to node
    GPS1 P Element pressure extrapolated to node
    VONM Element von Mises stress extrapolated on node
    MASS   Nodal mass
    NDMASS   Non-diagonal mass variation (see time step control /DT/AMS). 6
    NVAR1, NVAR2, ...NVAR5   Nodal Variable 1, 2 …5
    P   Element pressure extrapolated to attached nodes for 3D ALE and FVM nodes of external and internal airbag surfaces.
    SKID_LINE
    INTER=
    I or ALL
    This option is available for /INTER/TYPE8 and /INTER/TYPE21.

    For /INTER/TYPE21, it is the maximum over time of the ratio between tangential force F t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaWG0baabeaaaaa@3BC6@ and the limit tangential force F t = P s k i d S 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaWG0baabeaakiabg2da9iaadcfadaWgaaWc baGaam4CaiaadUgacaWGPbGaamizaaqabaGccqGHflY1daWcaaqaai aadofaaeaadaGcaaqaaiaaiodaaSqabaaaaaaa@45AA@ . Refer to /INTER/TYPE21 to define Pskid.

    = 0.0
    If no sliding or contact
    = F t P s k i d S 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba WaaSaaaeaacaWGgbWaaSbaaSqaaiaadshaaeqaaaGcbaGaamiuamaa BaaaleaacaWGZbGaam4AaiaadMgacaWGKbaabeaakiabgwSixpaala aabaGaam4uaaqaamaakaaabaGaaG4maaWcbeaaaaaaaaaa@44B4@
    If sliding and F t P s k i d S 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaWG0baabeaakiabgsMiJkaadcfadaWgaaWc baGaam4CaiaadUgacaWGPbGaamizaaqabaGccqGHflY1daWcaaqaai aadofaaeaadaGcaaqaaiaaiodaaSqabaaaaaaa@4659@ . Output will be between 0 and 1.
    = 1.0
    If sliding and F t > P s k i d S 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamOramaaBaaaleaacaWG0baabeaakiabg6da+iaadcfadaWgaaWc baGaam4CaiaadUgacaWGPbGaamizaaqabaGccqGHflY1daWcaaqaai aadofaaeaadaGcaaqaaiaaiodaaSqabaaaaaaa@45AC@ .
    For /INTER/TYPE8, drawbead output values are:
    = 0
    No contact.
    = 1.0
    Main node is in contact with a drawbead.
    SSP   Nodal sound speed (FVMBAG)
    STIF   Nodal translational stiffness
    STIFR   Nodal rotational stiffness
    TEMP   Nodal temperature for thermal exchange or element temperature extrapolated to attached nodes for 3D ALE and FVM nodes of external and internal airbag surfaces.
    VFRAC   Nodal Volumetric Fraction where the element volumetric fraction extrapolated to attached nodes in LAW37 and LAW51.
    ZVFRAC   Nodal volumetric fraction.
    Table 2. Vector Output
    Keyword3 Keyword4 Description
    ACC   Node acceleration
    AROT   Rotational acceleration

    Idrot=1 must also be set in /IOFLAG; otherwise, rotational degrees of freedom (DOF) are not computed, and this option is ignored.

    CLUSTER FORCE

    MOMENT

    Spotweld /CLUSTER force or Moment vector in global coordinates
    CONT   Node contact forces
    MAX Maximum nodal contact forces over time
    CONT2   Tied interface contact force (/INTER/TYPE2)
    TMAX Maximum over time of tied interface contact force (/INTER/TYPE2)
    TMIN Minimum over time of tied interface contact force (/INTER/TYPE2)
    DIS   Node displacement
    TMAX Maximum node magnitude of displacement vector over time
    DROT   Node rotation

    Idrot= 1 must also be set in /IOFLAG; otherwise, rotational degree of freedom (DOF) are not computed, and this option is ignored.

    FEXT   External force
    FINT   Internal force
    FOPT   Forces or Moments for rigid bodies, rigid walls and sections.
    FRES   Residual force (FEXTFINT)
    FREAC   Reaction forces for imposed velocities, displacements, accelerations and boundary conditions.
    FVEL   Gas velocity vectors for fluid flow in Finite Volume Method monitored volume, /FVMBAG1.
    MREAC   Reaction moments for imposed velocities, displacements, accelerations and boundary conditions.
    PCONT   Normal or tangential contact pressure. 7
    TMAX Maximum over time of normal or tangential contact pressure.
    PCONT2   Normal or tangential tied contact pressure. 7
    TMAX Maximum over time of normal or tangential tied contact pressure.
    TMIN Minimum over time of normal or tangential tied contact pressure.
    VROT   Rotational velocities

    Idrot= 1 must also be set in /IOFLAG; otherwise, rotational degree of freedom (DOF) are not computed, and this option is ignored.

    VEL   Node translational velocity
    TMAX Maximum magnitude of node translational velocity vector over time
    GRID ALE grid translational velocity
    Table 3. Tensor Output
    Keyword3 Keyword4 Description
    GPS   Mean nodal stress tensor calculated from the element shape functions. 8

    Only available for solid elements with /PROP/TYPE6 (SOL_ORTH), /PROP/TYPE14 (SOLID), /PROP/TYPE20 (TSHELL), /PROP/TYPE21 (TSH_ORTH) and /PROP/TYPE22 (TSH_COMP)

    TMAX/N=I Mean nodal stress tensor calculated from the element shape functions (8) corresponding to the maximum principal stress (P1) over time.

    Mean nodal stress tensor calculated from the element shape functions (8) corresponding to the minimum principal stress (P3) over time.

    Only available with solids elements with /PROP/TYPE6 (SOL_ORTH), /PROP/TYPE14 (SOLID), /PROP/TYPE20 (TSHELL), /PROP/TYPE21 (TSH_ORTH) and /PROP/TYPE22 (TSH_COMP).

    The option N=I allows the maximum stress to be computed only every I cycles to reduce the CPU time. By default, N=10.

    GPSTRAIN   Mean nodal strain tensor calculated from the element shape functions. 8

    Only available with solids elements with /PROP/TYPE6 (SOL_ORTH), /PROP/TYPE14 (SOLID), /PROP/TYPE20 (TSHELL), /PROP/TYPE21 (TSH_ORTH) and /PROP/TYPE22 (TSH_COMP).

    TMAX/N=I Mean nodal strain tensor calculated from the element shape functions (8) corresponding to the maximum principal strain (P1) over time.

    Mean nodal strain tensor calculated from the element shape functions (8) corresponding to the minimum principal strain (P3) over time.

    Only available with solids elements with /PROP/TYPE6 (SOL_ORTH), /PROP/TYPE14 (SOLID), /PROP/TYPE20 (TSHELL), /PROP/TYPE21 (TSH_ORTH) and /PROP/TYPE22 (TSH_COMP).

    The option N=I allows the maximum strain to be computed only every I cycles to reduce the CPU time. By default, N=10.

    GPS1   Not recommended - use /H3D/NODA/GPS.

    Mean stress of elements connected to node. Only available for /BRICK and /TETRA4.

    The stress of the corner node is extrapolated from mean stress at integration point in all elements which are connected to this node.

    GPS2   Not recommended - use /H3D/NODA/GPS.

    Mean (using relative element volume) stress of elements connected to node. Only available for /BRICK and /TETRA4.

    The stress of the corner node is extrapolated from the stress at the integration point.

  3. DAMA2 damage percentages for /INTER/TYPE2 with rupture (Spotflag = 20, 21, or 22):(1)
    min ( 100 , 100 n o r m a l r e l a t i v e d i s p l a c e m e n t max n o r m a l r e l a t i v e d i s p l a c e m e n t )
    (2)
    min ( 100 , 100 tangent r e l a t i v e d i s p l a c e m e n t max t a n g e n t r e l a t i v e d i s p l a c e m e n t )
  4. (3)
    D I N E R = ( I n e r t i a ( t ) I 0 I 0 )

    Where, I 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIWaaabeaaaaa@37AE@ is the nodal inertia at the beginning of the current run and I n e r t i a ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8akY=xipgYlh9vqqj=hEeei0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaamysaiaad6gacaWGLbGaamOCaiaadshacaWGPbGaamyyamaabmGa baGaamiDaaGaayjkaiaawMcaaaaa@42C9@ is the current inertia.

  5. D M A S S = ( Δ M M 0 ) with Δ M = M M 0
    Where,
    M 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIWaaabeaaaaa@37AE@
    Nodal mass at the beginning of the restart.
    M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CE@
    Current mass.
    Note: Δ M is re-set to 0 at the beginning of each restart file.
  6. When /DT/AMS is used, a non-diagonal mass matrix is used to increase the time step. On each line of the mass matrix, the lumped mass M 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIWaaabeaaaaa@37AE@ is increased with some value Δ M which is compensated with non-diagonal terms such that the total mass to remain constant.(4)
    N D M A S S = ( Δ M M 0 )
  7. For PCONT or PCONT2, two nodal vectors are output:(5)
    P n = F n S , P t = F t S
    Where,
    F n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOramaaBa aaleaacaWG0baabeaaaaa@37EA@
    Sum of normal contact forces applied to the node
    F t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOramaaBa aaleaacaWG0baabeaaaaa@37EA@
    Sum of tangential contact forces applied to the node
    S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaaaa@36CE@
    Extrapolated surface of segments connected to the node
  8. The stress or strain of the corner node is computed using bilinear extrapolation of the shape function from stress or strain at integration points of each element which are connected to this node. For thick shell properties, bilinear extrapolation is computed using integration points of upper and lower layers.