2024.1
Create, open, import, and save models.
Export various file types from the selected client to another format.
Learn about the CAD readers supported by the application and the options available for exporting CAD geometry data.
Overview of the supported formats, versions, and file extensions.
Use the FiberSim option to export composite data.
View new features for Altair HyperWorks 2024.1.
Learn the basics and discover the workspace.
Learn more about the Altair HyperWorks suite of products with interactive tutorials.
Start and configure the applications.
View a list of deprecated panels and their newer, equivalent workflows.
The following file types can be read, depending upon the active application.
Create a new file.
Open a file.
Import various file types into the selected client.
When loading an .hm file, you may receive a warning message depending on the version and solver interface in which the file was last saved.
Load a different solver interface in the application.
Convert finite element models to another solver format.
Load command files, scripts, solver template files, preferences, or the Metadata Table.
Save all of the data in your current session.
Use the CATIA Composites Link option to export composite drape data.
CAD writers provide options for processing data during export.
When a CAD file is exported from the application, a .msg file is created, or appended to, in the current working directory.
Export solver input files.
Export 3D models.
Export plot data in several different formats so that it can be read by other software applications.
Learn about exporting connector files.
If you insert special comment cards into your input deck, you can provide HyperMesh with additional information about the colors and names of entities. You can also use comments to preserve information that is not supported by a particular solver, for example, assemblies or system references.
Export settings for AMF, AVI, H3D, JPEG, and GIF files.
Most FEA solvers allow you to organize the input deck into separate files and provide a mechanism to include (or refer) these files in the main input deck.
Templates can be imported by means of the File > Import menu.
Record a video or take a snapshot of the screen.
Use the Units tool to convert a finite element model from its initial unit system to a new unit system.
Set up sessions and create report templates.
Solver interfaces supported in HyperMesh.
A solver interface is made up of a template and a FE-input reader.
Browsers provide a structured view of model data, which you can use to review, modify, create, and manage the contents of a model. In addition to visualization, browsers offer features like search, filtering, and sorting, which enhance your ability to navigate and interact with the model data.
Create and edit 2D parametric sketch geometry.
Create, edit, and cleanup geometry.
FE geometry is topology on top of mesh, meaning CAD and mesh exist as a single entity. The purpose of FE geometry is to add vertices, edges, surfaces, and solids on FE models which have no CAD geometry.
Explore the different types of mesh you can create in HyperMesh and create and edit 0D, 1D, 2D, and 3D elements.
Create, organize and manage parts and subsystems.
HyperMesh composites modeling.
Create connections between parts of your model.
Rapidly change the shape of the FE mesh without severely sacrificing the mesh quality.
Create a reduced ordered model to facilitate optimization at the concept phase.
Workflow to support topology optimization model build and setup.
Setup an Optimization in HyperMesh.
Multi-disciplinary design exploration and optimization tools.
Validate the model built before running solver analysis.
Models require loads and boundary conditions in order to represent the various physics and/or physical equivalents to bench and in-use testing.
Reduce a full 3D model with axisymmetric surfaces while accounting for imperfections.
Tools and workflows that are dedicated to rapidly creating new parts for specific use cases, or amending existing parts. The current capabilities are focused on stiffening parts.
Tools used for crash and safety analysis.
Use airbag folder utilities and export a resulting airbag in a Radioss deck.
Essential utility tools developed using HyperMesh-Tcl.
Import an aeroelastic finite element model with Nastran Bulk Data format.
Framework to plug certification methods to assess margin of safety from the model and result information.
Use PhysicsAI to build fast predictive models from CAE data. PhysicsAI can be trained on data with any physics or remeshing and without design variables.
Results data can be post-processed using both HyperMesh and HyperView.
The Developer ribbon contains tools for automation and customization.
HyperGraph is a data analysis and plotting tool with interfaces to many file formats.
MotionView is a general pre-processor for Multibody Dynamics.
MediaView plays video files, displays static images, tracks objects, and measures distances.
Use TableView to create an Excel-like spreadsheet.
TextView math scripts reference vector data from HyperGraph windows to automate data processing and data summary.
Create, define, and export reports.
View All Altair HyperWorks Help