Materials

Use the tool to view, add, and edit the material properties that are used for NLFE bodies.

Create and Edit Materials

  1. From the Model menu, select from the drop-down menu.
    The Material Properties dialog opens.
  2. Select an elasticity type from the left-most drop-down menu.
  3. Select a material from the Material list and review its properties.
    CAUTION: For your convenience, a set of materials are provided by default. The values of the properties provided are generic in nature, and might not be appropriate for the actual problem or material you intend to use with it. It is advised these materials be used with caution and that you obtain more accurate material properties.
  4. Optional: Edit the material's elastic strain limit by entering a value in the corresponding field.
    Note: For NLFE bodies, MotionSolve will provide warning whenever the strain in the body crosses this specified limit. You can also disable a material's elastic strain limit but deactivating the check box next to the field.
  5. Add a new material property.
    1. Select the desired elasticity type.
    2. Click the Add button to bring up the Add a Material Property dialog.
    3. Specify a label for the material property.
    4. Specify a variable name for the material property.
    5. Select a preexisting material to use as a source for the new material's values or select New.
    Tip: Delete any material property that was added by selecting that property and clicking Delete.
  6. Edit the material property.
    1. Select the material property type from the Type drop-down menu.
      For linear elastic materials, the available options are Isotropic, Anisotropic, and Orthotropic. For hyper elastic materials, the available options are Neo-Hookean, Incompressible, Mooney-Rivlin, and Yeoh.
    2. Enter values for the available properties in each field. For anisotropic material properties, specify the elements of the 6x6 stiffness matrix.
      Tip: For linear elastic materials that are used by NLFE bodies of type Beam, activate the Elastic line check box to have the material model consider the beam as an elastic line (curve) passing through the neutral axis. All the deformation, including the axial, bending, shear and torsion are calculated at the neutral axis. The elastic line approach considers effects of cross section deformations averaged and calculated at the neutral axis.
  7. Click Close to exit the dialog.

Hyper Elastic Materials Overview

For hyper elastic materials, different constitutive material models are supported, such as: Neo-Hookean (both compressible and incompressible), Mooney-Rivlin, and Yeoh models that are used to model a hyper elastic NLFE Body.

Hyper elastic materials can undergo large deformations with a non-linear stress strain relationship.

The constitutive models for hyper elastic materials are characterized using the strain energy density function.

The following table lists the constitutive equations for various models:
Type Equation Description
Neo-Hookean Compressible U = μ 2 ( I 1 3 ) μ ln J + λ 2 ( ln J ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabg2 da9maalaaabaGaeqiVd0gabaGaaGOmaaaacaGGOaGaamysamaaBaaa leaacaaIXaaabeaakiabgkHiTiaaiodacaGGPaGaeyOeI0IaeqiVd0 MaciiBaiaac6gacaWGkbGaey4kaSYaaSaaaeaacqaH7oaBaeaacaaI YaaaaiaacIcaciGGSbGaaiOBaiaadQeacaGGPaWaaWbaaSqabeaaca aIYaaaaaaa@4CC7@ U - Strain Energy density function

μ - Shear modulus

I 1 r x T r x + r y T r y + r z T r z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaaIXaaabeaakiabgkHiTiaadkhadaqhaaWcbaGaamiEaaqa aiaadsfaaaGccaWGYbWaaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaam OCamaaDaaaleaacaWG5baabaGaamivaaaakiaadkhadaWgaaWcbaGa amyEaaqabaGccqGHRaWkcaWGYbWaa0baaSqaaiaadQhaaeaacaWGub aaaOGaamOCamaaBeaaleaacaWG6baabeaaaaa@49ED@ - rx, ry, and rz are the gradients of NLFE grids

λ = 2 μ v 1 2 v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaey ypa0ZaaSaaaeaacaaIYaGaeqiVd0MaamODaaqaaiaaigdacqGHsisl caaIYaGaamODaaaaaaa@3F8C@ , is called the 2nd Lame's constant, v is the Poisson's ratio

J = det ( J ) = r x T ( r y × r z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiabg2 da9iGacsgacaGGLbGaaiiDaiaacIcacaWGkbGaaiykaiabg2da9iaa dkhadaqhaaWcbaGaamiEaaqaaiaadsfaaaGccaGGOaGaamOCamaaBa aaleaacaWG5baabeaakiabgEna0kaadkhadaWgaaWcbaGaamOEaaqa baGccaGGPaaaaa@488F@

Neo-Hookean Incompressible U = μ 2 ( I ¯ 1 3 ) + k 2 ( J 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabg2 da9maalaaabaGaeqiVd0gabaGaaGOmaaaacaGGOaWaa0aaaeaacaWG jbaaamaaBaaaleaacaaIXaaabeaakiabgkHiTiaaiodacaGGPaGaey 4kaSYaaSaaaeaacaWGRbaabaGaaGOmaaaacaGGOaGaamOsaiabgkHi TiaaigdacaGGPaWaaWbaaSqabeaacaaIYaaaaaaa@4682@ I ¯ 1 = J 2 3 I 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGjbaaamaaBaaaleaacaaIXaaabeaakiabg2da9iaadQeadaahaaWc beqaamaalaaabaGaeyOeI0IaaGOmaaqaaiaaiodaaaaaaOGaamysam aaBaaaleaacaaIXaaabeaaaaa@3DFD@

k = 2 μ ( 1 + v ) 3 ( 1 2 v ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabg2 da9maalaaabaGaaGOmaiabeY7aTjaacIcacaaIXaGaey4kaSIaamOD aiaacMcaaeaacaaIZaGaaiikaiaaigdacqGHsislcaaIYaGaamODai aacMcaaaaaaa@43D4@ , bulk modulus

Mooney-Rivlin U = μ 10 ( I ¯ 1 3 ) + μ 01 ( I ¯ 2 3 ) + k 2 ( J 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabg2 da9iabeY7aTnaaBaaaleaacaaIXaGaaGimaaqabaGccaGGOaWaa0aa aeaacaWGjbaaamaaBeaaleaacaaIXaaabeaakiabgkHiTiaaiodaca GGPaGaey4kaSIaeqiVd02aaSbaaSqaaiaaicdacaaIXaaabeaakiaa cIcadaqdaaqaaiaadMeaaaWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0 IaaG4maiaacMcacqGHRaWkdaWcaaqaaiaadUgaaeaacaaIYaaaaiaa cIcacaWGkbGaeyOeI0IaaGymaiaacMcadaahaaWcbeqaaiaaikdaaa aaaa@5079@ μ01 and μ10 are material constants

I ¯ 2 = J 4 3 I 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGjbaaamaaBaaaleaacaaIYaaabeaakiabg2da9iaadQeadaahaaWc beqaamaalaaabaGaeyOeI0IaaGinaaqaaiaaiodaaaaaaOGaamysam aaBaaaleaacaaIYaaabeaaaaa@3E01@

I ¯ 2 = 1 2 ( ( t r ( C ) ) 2 ( t r ( C 2 ) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca WGjbaaamaaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGym aaqaaiaaikdaaaWaaeWaaeaadaqadaqaaiaadshacaWGYbWaaeWaae aacaWGdbaacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaOGaeyOeI0YaaeWaaeaacaWG0bGaamOCamaabmaabaGaam 4qamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaaa@4A44@ , where C is the Cauchy-Green deformation tensor

C = J T J MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiabg2 da9iaadQeadaahaaWcbeqaaiaadsfaaaGccaWGkbaaaa@3A72@

J = [ r x r y r z ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiabg2 da9maadmaabaGaamOCamaaBaaaleaacaWG4baabeaakiaadkhadaWg aaWcbaGaamyEaaqabaGccaWGYbWaaSbaaSqaaiaadQhaaeqaaaGcca GLBbGaayzxaaaaaa@403E@

r x r y r z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWG4baabeaakiaadkhadaWgaaWcbaGaamyEaaqabaGccaWG YbWaaSbaaSqaaiaadQhaaeqaaaaa@3C6D@ are the gradient vectors

Yeoh U = C 10 ( I ¯ 1 3 ) + C 20 ( I ¯ 1 3 ) 2 + C 30 ( I ¯ 1 3 ) 3 + k 2 ( J 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabg2 da9iaadoeadaWgaaWcbaGaaGymaiaaicdaaeqaaOGaaiikamaanaaa baGaamysaaaadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaIZaGaai ykaiabgUcaRiaadoeadaWgaaWcbaGaaGOmaiaaicdaaeqaaOGaaiik amaanaaabaGaamysaaaadaWgaaWcbaGaaGymaaqabaGccqGHsislca aIZaGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadoeadaWg aaWcbaGaaG4maiaaicdaaeqaaOGaaiikamaanaaabaGaamysaaaada WgaaWcbaGaaGymaaqabaGccqGHsislcaaIZaGaaiykamaaCaaaleqa baGaaG4maaaakiabgUcaRmaalaaabaGaam4AaaqaaiaaikdaaaGaai ikaiaadQeacqGHsislcaaIXaGaaiykamaaCaaaleqabaGaaGOmaaaa aaa@58AD@ C10, C20, and C30 are material constants

The material constants for these models have to be derived through testing, such as: uniaxial, bending, and shear tests.