Continuum Analysis

Continuum Analysis allows you to view and analyze your simulation data as a Continuum instead of discrete particles. 

Using EDEM Analyst, you can calculate the following Continuum quantities:
  • Granular temperature
  • Kinetic pressure
  • Mass density
  • Momentum density
  • Porosity
  • Solid fraction
  • Velocity
  • Shear stress
  • Normal stress
  • Concentration

    In addition to this, Continuum Analysis can also display EDEM Custom Property data generated through the EDEM API model.

Calculation Methods

For display of Continuum Analysis, a mesh which can be generated from either simple planes or by importing CAD Geometry is required. Particle data is evaluated for each node in the mesh and the coloring can then be applied and smoothed across the mesh.

To calculate the Continuum values at each evaluation point, a distance weighted sum of the particle data is performed using the following Gaussian Weighting function where Φ(r) is the Gaussian Distribution function relative to the distance r, a given particle away from a given point.

ϕ = 1 ( ( c u t o f f 3 ) 2 π ) 3 2 e r 2 ( c u t o f f 3 ) 2 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaey ypa0ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaGGOaGaaiikamaalaaa baGaam4yaiaadwhacaWG0bGaam4BaiaadAgacaWGMbaabaGaaG4maa aacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeqiWdaNaaiykamaaCaaa leqabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaaaabeaaaaGccaWGLb WaaWbaaSqabeaacqGHsisldaWcaaqaamaaemaabaGaamOCaaGaay5b SlaawIa7amaaCaaameqabaGaaGOmaaaaaSqaaiaacIcadaWcaaqaai aadogacaWG1bGaamiDaiaad+gacaWGMbGaamOzaaqaaiaaiodaaaGa aiykamaaCaaameqabaGaaGOmaaaaaaaaaaaa@5709@

The cut-off distance is used to determine the width of the distribution function. Using the above equation, 99% of the function's weighting is within a sphere of influence with a radius equal to the cut-off distance. Particles outside the sphere of influence of an evaluation point will not be included in the continuum calculation for that point. This is a parameter that you can change based on their particle data although a value of nine times the average particle diameters is typically recommended, especially if the particle size distribution is narrow.


The following equations are used to extract particle data and apply attribute values to the evaluation points using the Gaussian distribution function.

Mass density

where ρ(r,t) is the mass density, is the mass of the particle, and is the Gaussian function weighting.

ρ(r,t)= i m i ϕ(r r i ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaai ikaiaadkhacaGGSaGaamiDaiaacMcacqGH9aqpdaaeqbqaaiaad2ga daWgaaWcbaGaamyAaaqabaGccqaHvpGzcaGGOaGaamOCaiabgkHiTi aadkhadaWgaaWcbaGaamyAaaqabaGccaGGPaaaleaacaWGPbaabeqd cqGHris5aaaa@48FB@

Momentum density

The magnitude of the momentum density can be analyzed along with the X, Y, and Z components.

ρ ( r , t ) = i m i v i ϕ ( r r i ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaai ikaiaadkhacaGGSaGaamiDaiaacMcacqGH9aqpdaaeqbqaaiaad2ga daWgaaWcbaGaamyAaaqabaGccaWG2bWaaSbaaSqaaiaadMgaaeqaaO Gaeqy1dyMaaiikaiaadkhacqGHsislcaWGYbWaaSbaaSqaaiaadMga aeqaaOGaaiykaaWcbaGaamyAaaqab0GaeyyeIuoaaaa@4B1A@

Granular temperature

where tg is the granular temperature, vi(t) is velocity and v(ri(t),t) is velocity of the particle.

tg= 1 3 < i ( v i (t)v ( r i (t),(t)) 2 > MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaadE gacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIZaaaaiabgYda8maaqafa baGaaiikaiaadAhadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamiDai aacMcacqGHsislcaWG2bGaaiikaiaadkhadaWgaaWcbaGaamyAaaqa baGccaGGOaGaamiDaiaacMcacaGGSaGaaiikaiaadshacaGGPaGaai ykamaaCaaaleqabaGaaGOmaaaaaeaacaWGPbaabeqdcqGHris5aOGa eyOpa4daaa@503A@

Kinetic pressure

where q is the kinetic pressure, ρ is the mass density, and v is the velocity

q = 1 2 ρ v 2 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdiNaamODamaaCaaa leqabaGaaGOmaaaaaaa@3D1C@

Solid Fraction

The solid fraction, Φ, is calculated by dividing the mass density, ρ, by the particle’s solid density, ρs.

ϕ= ρ ρ s MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaey ypa0ZaaSaaaeaacqaHbpGCaeaacqaHbpGCdaWgaaWcbaGaam4Caaqa baaaaaaa@3D77@

Porosity

The porosity is the inverse of the Solid Fraction.

Velocity

The velocity, v(r,t), is calculated by dividing the Momentum density by mass density. The magnitude of the velocity can be analyzed along with the X, Y, and Z components.

v ( r , t ) = p ( r , t ) / ρ ( r , t ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaacI cacaWGYbGaaiilaiaadshacaGGPaGaeyypa0JaamiCaiaacIcacaWG YbGaaiilaiaadshacaGGPaGaai4laiabeg8aYjaacIcacaWGYbGaai ilaiaadshacaGGPaaaaa@4749@

Shear and Normal Stress

Shear: XY, YZ, and ZX Normal: XX, YY, and ZZ‎.

σ c = i b ij F i ϕ(r r i ) MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadogaaeqaaOGaeyypa0ZaaabuaeaacaWGIbWaaSbaaSqa aiaadMgacaWGQbaabeaakiaadAeadaWgaaWcbaGaamyAaaqabaGccq aHvpGzcaGGOaGaamOCaiabgkHiTiaadkhadaWgaaWcbaGaamyAaaqa baGccaGGPaaaleaacaWGPbaabeqdcqGHris5aaaa@48F6@

Concentration

The Concentration of each Particle Type is calculated as:

c1= ϕ 1 ϕ 1 +...+ ϕ n MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaig dacqGH9aqpdaWcaaqaaiabew9aMnaaBaaaleaacaaIXaaabeaaaOqa aiabew9aMnaaBaaaleaacaaIXaaabeaakiabgUcaRiaac6cacaGGUa GaaiOlaiabgUcaRiabew9aMnaaBaaaleaacaWGUbaabeaaaaaaaa@44E1@