The Okumura-Hata model was extended to the frequency bands from 30 MHz to 3000
MHz^{1}. This combination is denoted as the “Extended Hata
model”.

Activate the extended Hata model on the Parameters of Okumura Hata
dialog, under Frequency, select the Use extended Hata
model (covers the frequency range 30 MHz - 3 GHz) check box (see Figure 2).

## Urban

30 MHz < *f* ≤ 150 MHz:

(1)
$\begin{array}{l}L=69.6+26.2\mathrm{log}(150)-20\mathrm{log}\left(\frac{150}{f}\right)-13.82\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\\ \text{}+\left[44.9-6.55\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\right]\mathrm{log}{\left(d\right)}^{\alpha}-a\left({H}_{m}\right)-b\left({H}_{b}\right)\end{array}$

150 MHz < *f* ≤ 1500 MHz:

(2)
$\begin{array}{l}L=69.6+26.2\mathrm{log}(f)-13.82\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\\ \text{}+\left[44.9-6.55\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\right]\mathrm{log}{\left(d\right)}^{\alpha}-a\left({H}_{m}\right)-b\left({H}_{b}\right)\end{array}$

1500 MHz < *f* ≤ 2000 MHz:

(3)
$\begin{array}{l}L=46.3+33.9\mathrm{log}(f)-13.82\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\\ \text{}+\left[44.9-6.55\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\right]\mathrm{log}{\left(d\right)}^{\alpha}-a\left({H}_{m}\right)-b\left({H}_{b}\right)\end{array}$

2000 MHz < *f* ≤ 3000 MHz:

(4)
$\begin{array}{l}L=46.3+33.9\mathrm{log}(2000)+10\mathrm{log}\left(\frac{f}{2000}\right)-13.82\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\\ \text{}+\left[44.9-6.55\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\right]\mathrm{log}{\left(d\right)}^{\alpha}-a\left({H}_{m}\right)-b\left({H}_{b}\right)\end{array}$

## Suburban

(5)
$L=L(\text{urban})-2{\left\{\mathrm{log}\left[\frac{\mathrm{min}\left\{\mathrm{max}\left\{150,f\right\},2000\right\}}{28}\right]\right\}}^{2}-5.4$

## Open Area

(6)
$L=L(\text{urban})-4.78\mathrm{l}{\left\{\mathrm{log}\left[\mathrm{min}\left\{\mathrm{max}\left\{150,f\right\},2000\right\}\right]\right\}}^{2}+18.33\mathrm{log}\left[\mathrm{min}\left\{\mathrm{max}\left\{150,f\right\},2000\right\}\right]-40.94$

Where,

*L* = path loss (dB)
*f* = frequency (MHz)
*H*_{b} = transmitter antenna height above ground (m)
*H*_{m} = receiver antenna height above ground (m)
*d* = distance between transmitter and receiver (km)
*a(H*_{m}), *b(H*_{b}) = antenna height correction
factors, defined as follows:

(7)
$\begin{array}{l}a\left({H}_{m}\right)=\left(1.1\mathrm{log}(f)-0.7\right)\mathrm{min}\left\{10,{H}_{m}\right\}-(1.56\mathrm{log}(f)-0.8)+\mathrm{max}\left\{0,\text{}20\mathrm{log}\left(\frac{{H}_{m}}{10}\right)\right\}\\ b\left({H}_{b}\right)=\mathrm{min}\left\{0,\text{}20\mathrm{log}\left(\frac{{H}_{b}}{30}\right)\right\}\end{array}$

The exponent

$\alpha $
is a distance correction factor for distances > 20
km, defined as follows:

(8)
$\alpha =\{\begin{array}{ccccccc}1& \text{for}& & & d& \le & 20\text{km}\\ 1+\left(0.14+1.87\times {10}^{-4}f+1.07\times {10}^{-3}{H}_{b}\right){\left(\mathrm{log}\frac{d}{20}\right)}^{0.8}& \text{for}& 20\text{km}& & d& \le & 100\text{km}\end{array}$

with the following model restrictions:

*f*: 30MHz to 3000 MHz
*H*_{b}: 30m to 200 m
*H*_{m}: 1 m to 10 m
*d*: 0.1 km to 100 km, but in practice, it is recommended to use it up
to 40 km.