# Extended Hata Model

The Okumura-Hata model was extended to the frequency bands from 30 MHz to 3000
MHz^{1}. This combination is denoted as the Extended Hata
model

.

Activate the extended Hata model on the Parameters of Okumura Hata dialog, under Frequency, select the Use extended Hata model (covers the frequency range 30 MHz - 3 GHz) check box (see Figure 2).

## Urban

30 MHz < *f* ≤ 150 MHz:

$$\begin{array}{l}L=69.6+26.2\mathrm{log}(150)-20\mathrm{log}\left(\frac{150}{f}\right)-13.82\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\\ \text{}+\left[44.9-6.55\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\right]\mathrm{log}{\left(d\right)}^{\alpha}-a\left({H}_{m}\right)-b\left({H}_{b}\right)\end{array}$$

150 MHz < *f* ≤ 1500 MHz:

$$\begin{array}{l}L=69.6+26.2\mathrm{log}(f)-13.82\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\\ \text{}+\left[44.9-6.55\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\right]\mathrm{log}{\left(d\right)}^{\alpha}-a\left({H}_{m}\right)-b\left({H}_{b}\right)\end{array}$$

1500 MHz < *f* ≤ 2000 MHz:

$$\begin{array}{l}L=46.3+33.9\mathrm{log}(f)-13.82\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\\ \text{}+\left[44.9-6.55\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\right]\mathrm{log}{\left(d\right)}^{\alpha}-a\left({H}_{m}\right)-b\left({H}_{b}\right)\end{array}$$

2000 MHz < *f* ≤ 3000 MHz:

$$\begin{array}{l}L=46.3+33.9\mathrm{log}(2000)+10\mathrm{log}\left(\frac{f}{2000}\right)-13.82\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\\ \text{}+\left[44.9-6.55\mathrm{log}\left(\mathrm{max}\left\{30,{H}_{b}\right\}\right)\right]\mathrm{log}{\left(d\right)}^{\alpha}-a\left({H}_{m}\right)-b\left({H}_{b}\right)\end{array}$$

## Suburban

$$L=L(\text{urban})-2{\left\{\mathrm{log}\left[\frac{\mathrm{min}\left\{\mathrm{max}\left\{150,f\right\},2000\right\}}{28}\right]\right\}}^{2}-5.4$$

## Open Area

$$L=L(\text{urban})-4.78\mathrm{l}{\left\{\mathrm{log}\left[\mathrm{min}\left\{\mathrm{max}\left\{150,f\right\},2000\right\}\right]\right\}}^{2}+18.33\mathrm{log}\left[\mathrm{min}\left\{\mathrm{max}\left\{150,f\right\},2000\right\}\right]-40.94$$

Where,

*L*= path loss (dB)*f*= frequency (MHz)*H*= transmitter antenna height above ground (m)_{b}*H*= receiver antenna height above ground (m)_{m}*d*= distance between transmitter and receiver (km)*a(H*,_{m})*b(H*= antenna height correction factors, defined as follows:_{b})

$$\begin{array}{l}a\left({H}_{m}\right)=\left(1.1\mathrm{log}(f)-0.7\right)\mathrm{min}\left\{10,{H}_{m}\right\}-(1.56\mathrm{log}(f)-0.8)+\mathrm{max}\left\{0,\text{}20\mathrm{log}\left(\frac{{H}_{m}}{10}\right)\right\}\\ b\left({H}_{b}\right)=\mathrm{min}\left\{0,\text{}20\mathrm{log}\left(\frac{{H}_{b}}{30}\right)\right\}\end{array}$$

The exponent
$\alpha $
is a distance correction factor for distances > 20
km, defined as follows:
$$\alpha =\{\begin{array}{ccccccc}1& \text{for}& & & d& \le & 20\text{km}\\ 1+\left(0.14+1.87\times {10}^{-4}f+1.07\times {10}^{-3}{H}_{b}\right){\left(\mathrm{log}\frac{d}{20}\right)}^{0.8}& \text{for}& 20\text{km}& & d& \le & 100\text{km}\end{array}$$

with the following model restrictions:

*f*: 30MHz to 3000 MHz*H*: 30m to 200 m_{b}*H*: 1 m to 10 m_{m}*d*: 0.1 km to 100 km, but in practice, it is recommended to use it up to 40 km.

^{1}Report ITU-R SM.2028-2

Monte Carlo simulation methodology for the use in sharing and compatibility studies between different radio services or systems, section 6.1, published June 2017.