/MAT/LAW95 (BERGSTROM_BOYCE)

Block Format Keyword This law is a constitutive model for predicting the nonlinear time dependency of elastomer like materials.

It uses a polynomial material model for the hyperelastic material response and the Bergstrom-Boyce material model 1 to represent the nonlinear viscoelastic time dependent material response. This law is only compatible with solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW95/mat_ID/unit_ID or /MAT/BERGSTROM_BOYCE/mat_ID/unit_ID
mat_title
ρ i
C10 C01 C20 C11 C02
C30 C21 C12 C03 sb
D1 D2 D3 ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AB@ Iform
A C M ξ Tau_ref

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Unit identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
C10 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
C01 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
C20 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
C11 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
C02 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
C30 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
C21 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
C12 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
C03 Material parameter for hyperelastic model.

Default = 0.0 (Real)

[ Pa ]
Sb Stress scaling factor for network B.

Default = 0.0 (Real)

D1 Volumetric material parameter 1, for bulk modulus computation.

K = 2 D 1

Default = 0.0 (Real)

[ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@
D2 Volumetric material parameter 2.

Default = 0.0 (Real)

[ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@
D3 Volumetric material parameter 3.

Default = 0.0 (Real)

[ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@
ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd4gaaa@37AB@ Poisson's ratio.

Default = 0.495 (Real)

Iform Volumetric formulation flag in the strain energy potential.
= 1 (Default)
Standard strain energy density.
= 2
Modified strain energy density with logarithmic function.

(Integer)

A Effective creep strain rate.

Default = 0.0 (Positive Real)

[ 1 s ]
C Exponent characterizing the creep strain dependence of the effective creep strain rate in network B (-1 < C < 0).

Default = -0.7 (Real)

M Positive exponent ( M 1.0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaey yzImRaaGymaiaac6cacaaIWaaaaa@3C27@ ) characterizing the effective stress dependence of the effective creep strain rate in network B.

Default = 1.0 (Real)

ξ Constant for regularization of the creep strain rate near undeformed state.

Default = 0.01 (Real)

Tau_ref Reference stress for the Effective creep strain rate in secondary network.

Default = 1.0 (Real)

[ Pa ]

Example

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW95/1/1
BERGSTROM 
#              RHO_I        
             1.42E-6 		
#                C10                 C01                 C20                 C11                 C22
              0.2019                  0.             4.43E-5
#                C30                 C21                 C12                 C03                  Sb
            1.295E-4                  0.                  0.                  0.                 2.0
#                 D1                  D2                  D3                  NU     iform
           2.1839E-3             8.68E-5           -1.794E-5                  0.         1
#                  A                EXPC                EXPM                 KSI             Tau_ref
              1.0E-1                -0.7                   5                0.01
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The response of the material can be represented using two parallel networks A and B. Network A is the equilibrium network with a nonlinear hyperelastic component. In network B, a nonlinear hyperelastic component is in series with a nonlinear viscoelastic flow element, and hence the time-dependent network.
    Figure 1. Time-dependent Network


  2. The same polynomial strain energy potential is used for the hyperelastic components in both networks. In network B, this potential is scaled by factor Sb. The strain energy density of the hyperelastic component of the network can have 2 different forms for the volumetric part depending on the flag Iform:
    • Iform = 1 (Default):
      W A = i + j = 1 3 C i j ( I ¯ 1 3 ) i ( I ¯ 2 3 ) j + i = 1 3 1 D i ( J 1 ) 2 i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaaS baaSqaaiaadgeaaeqaaOGaeyypa0ZaaabCaeaacaWGdbWaaSbaaSqa aiaadMgacaWGQbaabeaakmaabmaabaGabmysayaaraWaaSbaaSqaai aaigdaaeqaaOGaeyOeI0IaaG4maaGaayjkaiaawMcaamaaCaaaleqa baGaamyAaaaakiabgwSixpaabmaabaGabmysayaaraWaaSbaaSqaai aaikdaaeqaaOGaeyOeI0IaaG4maaGaayjkaiaawMcaamaaCaaaleqa baGaamOAaaaaaeaacaWGPbGaey4kaSIaamOAaiabg2da9iaaigdaae aacaaIZaaaniabggHiLdGccqGHRaWkdaaeWbqaamaalaaabaGaaGym aaqaaiaadseadaWgaaWcbaGaamyAaaqabaaaaOWaaeWaaeaacaWGkb GaeyOeI0IaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaiaa dMgaaaaabaGaamyAaiabg2da9iaaigdaaeaacaaIZaaaniabggHiLd aaaa@614A@
    • Iform = 2:
      W A = i + j = 1 3 C i j I ¯ 1 3 i I ¯ 2 3 j + K J 1 ln J MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaaS baaSqaaiaadgeaaeqaaOGaeyypa0ZaaabCaeaacaWGdbWaaSbaaSqa aiaadMgacaWGQbaabeaakmaabmaabaGabmysayaaraWaaSbaaSqaai aaigdaaeqaaOGaeyOeI0IaaG4maaGaayjkaiaawMcaamaaCaaaleqa baGaamyAaaaakiabgwSixpaabmaabaGabmysayaaraWaaSbaaSqaai aaikdaaeqaaOGaeyOeI0IaaG4maaGaayjkaiaawMcaamaaCaaaleqa baGaamOAaaaaaeaacaWGPbGaey4kaSIaamOAaiabg2da9iaaigdaae aacaaIZaaaniabggHiLdGccqGHRaWkcaWGlbWaaeWaaeaacaWGkbGa eyOeI0IaaGymaiabgkHiTiGacYgacaGGUbGaamOsaaGaayjkaiaawM caaaaa@5B85@
      Where,
      • K = 2 / D 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0JaaGOmaiaac+cacaWGebWaaSbaaSqaaiaaigdaaeqaaaaa@3B51@
      • D 2 = D 3 = 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaaikdaaeqaaOGaeyypa0JaamiramaaBaaaleaacaaIZaaa beaakiabg2da9iaaicdaaaa@3C99@
      • W B = S b W A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaaS baaSqaaiaadkeaaeqaaOGaeyypa0Jaam4uamaaBaaaleaacaWGIbaa beaakiabgwSixlaadEfadaWgaaWcbaGaamyqaaqabaaaaa@3F4B@
      • I ¯ 1 = λ ¯ 1 2 + λ ¯ 2 2 + λ ¯ 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGjbGbae badaWgaaWcbaGaaGymaaqabaGccqGH9aqpcuaH7oaBgaqeamaaDaaa leaacaaIXaaabaGaaGOmaaaakiabgUcaRiqbeU7aSzaaraWaa0baaS qaaiaaikdaaeaacaaIYaaaaOGaey4kaSIafq4UdWMbaebadaqhaaWc baGaaG4maaqaaiaaikdaaaaaaa@4567@
      • I ¯ 2 = λ ¯ 1 2 + λ ¯ 2 2 + λ ¯ 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGjbGbae badaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcuaH7oaBgaqeamaaDaaa leaacaaIXaaabaGaeyOeI0IaaGOmaaaakiabgUcaRiqbeU7aSzaara Waa0baaSqaaiaaikdaaeaacqGHsislcaaIYaaaaOGaey4kaSIafq4U dWMbaebadaqhaaWcbaGaaG4maaqaaiabgkHiTiaaikdaaaaaaa@482F@
      • λ ¯ i = J 1 3 λ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbae badaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaWGkbWaaWbaaSqabeaa cqGHsisldaWcaaqaaiaaigdaaeaacaaIZaaaaaaakiabeU7aSnaaBa aaleaacaWGPbaabeaaaaa@4036@
  3. For special value of C i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaadMgacaWGQbaabeaaaaa@3930@ , the polynomial model can be reduced to the following material models:
    • Yeoh: j=0

      Where, C10, C20, C30 are not zero

    • Mooney-Rivlin: i+j =1

      Where, C10 and C01 are not zero, and D2 =D3=0

    • Neo-Hookean:

      Only C10 and D1 are not zero

  4. The initial shear modulus and the bulk modulus are computed as:
    μ = 2 ( S b + 1 ) ( C 10 + C 01 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaaIYaWaaeWaaeaacaWGtbWaaSbaaSqaaiaadkgaaeqaaOGa ey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaam4qamaaBaaale aacaaIXaGaaGimaaqabaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaicda caaIXaaabeaaaOGaayjkaiaawMcaaaaa@4643@

    and

    K = 2 D 1 ( 1 + S b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0ZaaSaaaeaacaaIYaaabaGaamiramaaBaaaleaacaaIXaaabeaa aaGcdaqadaqaaiaaigdacqGHRaWkcaWGtbWaaSbaaSqaaiaadkgaae qaaaGccaGLOaGaayzkaaaaaa@3FD6@

  5. If D1= 0, an incompressible material is considered.
  6. If A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@3725@ =0, then only the hyperelastic polynomial material model is used with no viscoelastic time dependent response.
  7. The effective creep strain rate in network B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@3725@ is given by the expression:
    ε ˙ B v = A ( λ ˜ 1 + ξ ) C ( σ ¯ B τ r e f ) M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacuaH1oqzpaGbaiaadaqhaaWcbaWdbiaadkeaa8aabaWdbiaadAha aaGccqGH9aqpcaWGbbWaaeWaa8aabaWaaCbiaeaapeGaeq4UdWgal8 aabeqaa8qacaGGClaaaOGaeyOeI0IaaGymaiabgUcaRiabe67a4bGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGdbaaaOWdamaabmaaba WaaSaaaeaapeGafq4Wdm3dayaaraWaaSbaaSqaa8qacaWGcbaapaqa baaakeaacqaHepaDdaWgaaWcbaGaamOCaiaadwgacaWGMbaabeaaaa aakiaawIcacaGLPaaadaahaaWcbeqaa8qacaWGnbaaaaaa@50F8@
    Where,
    λ ˜ = I ¯ 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaH7oaBga acaiabg2da9maakaaabaWaaSaaaeaaceWGjbGbaebadaWgaaWcbaGa aGymaaqabaaakeaacaaIZaaaaaWcbeaaaaa@3BE7@ and σ ¯ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacuaHdpWCga qeamaaBaaaleaacaWGcbaabeaaaaa@392D@
    Effective stress in Network B
    ξ , M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@3725@ , C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@3725@ and τ ref MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadkhacaWGLbGaamOzaaqabaaaaa@3AB4@
    Input material parameters
1 Bergström, J. S., and M. C. Boyce. "Constitutive modeling of the large strain time-dependent behavior of elastomers." Journal of the Mechanics and Physics of Solids" 46, No. 5 (1998): 931-954