/MAT/LAW111

Block Format Keyword Describes the Marlow material model, which can be used to model hyper elastic behavior. This law is only compatible with solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW111/mat_ID/unit_ID or /MAT/MARLOW/mat_ID/unit_ID
mat_title
ρ i
Function input
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Itype fct_ID Fscale ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabe27aUbaa@3837@        

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit Identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
Itype Test data type (stress strain curve).
= 1 (Default)
Uniaxial data test.
= 2
Equibiaxial data test.
= 3
Planar data test.

(Integer)

fct_ID Function identifier defining engineer stress versus engineer strain.

(Integer)

ν MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabe27aUbaa@3837@ Poisson ratio.

Default = 0.495 (Real)

Fscale Scale factor for ordinate (stress) in function fct_ID.

Default= 1.0 (Real)

[ Pa ]

Example (Aluminum)

#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit_Mg_mm_s
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/MARLOW/1/1
Aluminium
#        Init. dens.         
              1.0E-9
#    Itype    fct_ID  	          Fscale                  Nu
         1        11                   0               0.495
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|   
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/11
eng. stress vs eng. strain (data from Treloar 1975)
#                  X                   Y
   0.0                 0.0
   0.118558340245158   0.147781942125394
   0.229807469073257   0.235370392667332
   0.352872064166251   0.317098176147032
   0.575267906053679   0.4127492327798
   0.826025385319594   0.497843181600741
   1.15247263605042    0.600395253711613
   1.41741319317695    0.681964895195418
   1.99461340483096    0.866102422989683
   2.57183319597017    1.06544342104666
   3.01188513821085    1.24856432172444
   3.75483021047915    1.60560301197591
   4.32044087300526    1.97102586370987
   4.74886561326187    2.30619464551444
   5.13008421468603    2.70807751093106
   5.41191132474589    3.04925719469397
   5.61340230088995    3.43730640075521
   5.84795248474777    3.79023377564191
   6.0210291095147     4.1479076695769
   6.14916629739038    4.49627566011047
   6.26551964740034    4.87506376966911
   6.36059461533377    5.25621459595217
   6.44855620568032    5.62216985907231
   6.59373206402824    6.34826716084913  	 
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|  
#enddata

Comments

  1. The Marlow energy density is considered as: (1)
    W = U ( I ¯ ) + V ( J ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabg2 da9iaadwfadaqadaqaaiqadMeagaqeaaGaayjkaiaawMcaaiabgUca RiaadAfadaqadaqaaiaadQeaaiaawIcacaGLPaaaaaa@3F37@

    with I ¯ = λ ¯ 1 2 + λ ¯ 2 2 + λ ¯ 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaara Gaeyypa0Jafq4UdWMbaebadaqhaaWcbaGaaGymaaqaaiaaikdaaaGc cqGHRaWkcuaH7oaBgaqeamaaDaaaleaacaaIYaaabaGaaGOmaaaaki abgUcaRiqbeU7aSzaaraWaa0baaSqaaiaaiodaaeaacaaIYaaaaaaa @440D@ and J = λ 1 λ 2 λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiabg2 da9iabeU7aSnaaBaaaleaacaaIXaaabeaakiabeU7aSnaaBaaaleaa caaIYaaabeaakiabeU7aSnaaBaaaleaacaaIZaaabeaaaaa@3FB3@

    Where, λ ¯ k = J 1 3 λ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4UdWMbae badaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaWGkbWaaWbaaSqabeaa cqGHsisldaWcdaadbaGaaGymaaqaaiaaiodaaaaaaOGaeq4UdW2aaS baaSqaaiaadUgaaeqaaaaa@4048@ the stretch in the directions k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGRbaaaa@39A7@ =1,2,3.

    V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D2@ is computed using bulk modulus K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D2@ (computed from test data function and Poisson's ratio).(2)
    V( J )= 1 2 K ( J1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaabm aabaGaamOsaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaGaam4samaabmaabaGaamOsaiabgkHiTiaaigdaaiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@416F@
    U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D2@ is determined using the data of uniaxial, biaxial or shear test (function fct_ID) as: (3)
    U( I ¯ )= 0 λ t 1 T( λ t 1 ) ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaabm aabaGabmysayaaraaacaGLOaGaayzkaaGaeyypa0Zaa8qmaeaacaWG ubWaaeWaaeaacqaH7oaBdaWgaaWcbaGaamiDaaqabaGccqGHsislca aIXaaacaGLOaGaayzkaaaaleaacaaIWaaabaGaeq4UdW2aaSbaaWqa aiaadshaaeqaaSGaeyOeI0IaaGymaaqdcqGHRiI8aOGaeyOaIyRaeq yTdugaaa@4BBA@
    Where,
    T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D2@
    Stress for the engineering strain λ t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadshaaeqaaOGaeyOeI0IaaGymaaaa@3A82@ .
    λ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadshaaeqaaaaa@38D0@
    Equivalent stretch corresponding to Uniaxial tension, equibiaxial or planar test.
  2. The Cauchy stress is computed as:(4)
    σ= 2 J U I ¯ dev( b * )+ V J I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4WdmNaey ypa0ZaaSaaaeaacaaIYaaabaGaamOsaaaadaWcaaqaaiabgkGi2kaa dwfaaeaacqGHciITceWGjbGbaebaaaGaamizaiaadwgacaWG2bGaai ikaiaadkgadaahaaWcbeqaaiaacQcaaaGccaGGPaGaey4kaSYaaSaa aeaacqGHciITcaWGwbaabaGaeyOaIyRaamOsaaaacaWGjbaaaa@4B20@

    Where, b * = J 2 3 F F T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaCa aaleqabaGaaiOkaaaakiabg2da9iaadQeadaahaaWcbeqaaiabgkHi TmaaliaabaGaaGOmaaqaaiaaiodaaaaaaOGaamOraiaadAeadaahaa Wcbeqaaiaadsfaaaaaaa@3EE3@ .

  3. /VISC/PRONY can be used with LAW111 to include viscous effects.