/MAT/LAW42 (OGDEN)
Block Format Keyword This keyword defines a hyperelastic, viscous, and incompressible material specified using the Ogden, Mooney-Rivlin material models.
This law is generally used to model incompressible rubbers, polymers, foams, and elastomers. This material can be used with shell and solid elements.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW42/mat_ID/unit_ID or /MAT/OGDEN/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
fct_IDblk | Fscaleblk | M | Iform | ||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | |||||
. . . M values of G (five per line) | |||||||||
. . . M values of (five per line) |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier (Integer, maximum 10 digits) |
|
unit_ID | Unit identifier (Integer, maximum 10 digits) |
|
mat_title | Material title (Character, maximum 100 characters) |
|
Initial density (Real) |
||
Poisson's ratio. 3 Default = 0.495 (Real) |
||
Cut-off stress in tension. Default = 1030 (Real) |
||
fct_IDblk | Function identifier which scales the
bulk coefficient as a function of the relative volume. 6 (Integer) |
|
Fscaleblk | Bulk function scale factor. Default = 1.0 (Real) |
|
M | Number of viscous terms in the Prony
series (order of the Maxwell model). (Integer) |
|
Iform | Strain energy density formulation flag.
1
|
|
pth parameter of the shear
hyperelastic modulus (up to 10) (Real) |
||
pth material exponent (up to
10). (Real) |
||
Gi | ith multiplier of the Prony
viscous term. 7 (Real) |
|
ith time relaxation of the
Prony viscous term. (Real) |
Example (Rubber)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/OGDEN/1/1
rubber
# RHO_I
1E-6
# Nu sigma_cut funIDbulk Fscale_bulk M Iform
.495 0 0 0 0 0
# Mu_1 Mu_2 Mu_3 Mu_4 Mu_5
2e-3 -1e-3 0 0 0
# Mu_6 Mu_7 Mu_8 Mu_9 Mu_10
0 0 0 0 0
# alpha_1 alpha_2 alpha_3 alpha_4 alpha_5
2 -2 0 0 0
# alpha_6 alpha_7 alpha_8 alpha_9 alpha_10
0 0 0 0 0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- This material model defines a hyperelastic,
viscous, and incompressible material specified using the Ogden, Neo-Hookean, or
Mooney-Rivlin material models. This law is generally used to model incompressible rubbers,
polymers, foams, and elastomers. This material can be used with shell and solid
elements.LAW42 uses the following strain energy density representation of the Ogden
material model.
- Iform=1 (default):
- Iform=2:
Where,- Strain energy density
- ith principal engineering stretch
- Relative volume defined as:
- Deviatoric stretch
- and
- Material constants coefficient pairs.
The initial shear modulus and bulk modulus ( ) are given by:
and
Where, is the Poisson's ratio and is only used for computing the bulk modulus.
- Iform=1 (default):
- Parameters
and
must be chosen so that initial shear modulus is
.
For material stability, it is required that each material constant pair .
- Poisson's ratio
is used only for computing the bulk modulus, Equation 4.
For pure incompressible materials, . This value leads to a finite bulk modulus ( ). Therefore, the recommended maximum Poisson's ratio for incompressible materials is .
Higher values of the Poisson's ratio may lead to a small time step value or divergence in case of implicit and explicit simulations.
- A particular
case of the Ogden material model is the incompressible Mooney-Rivlin model, which can be
represented using the following equation for the strain energy density
function:
Where, and are the first and second invariants of the right Cauchy-Green Tensor.
This representation can be derived from the Ogden strain energy density function when:
- A simple case of the Ogden material model
is the Neo-Hookean model represented using the following equation for the strain energy
density function:Where,
- First invariants of the right Cauchy-Green Tensor
- Material constant
This representation can be derived from the LAW42 Ogden strain energy density function when:
and
- In cases when the bulk modulus of a material is not large enough to prevent compression, LAW42 allows the input of a function (fct_IDblk) which scale the bulk modulus as a function of the relative volume so that the bulk modulus can be increased to maintain incompressibility.
- Viscous (rate) effects are modeled in
LAW42 using a Maxwell model, which can be described in a simplified manner as a system of n
springs with stiffness'
and dampers
:
Figure 1. Maxwell Model
The Maxwell model is represented using Prony series inputs ( ). The hyperelastic initial shear modulus is the same as the long-term shear modulus in the Maxwell model, and is the relaxation time:
The and values must be positive.
- /VISC/PRONY can be used with this material law to include viscous effects.