Explicit Dynamic Analysis

This newly developed OptiStruct Explicit solution type (ANALSIS=NLEXPL) has been developed solely in OptiStruct, in the same way as the OptiStruct implicit solution. The input data (elements, material, property, loading, and so on) for explicit solution is the same as implicit solution and the output data structure is also the same as implicit solution.

This solution sequence performs Nonlinear Explicit Finite Element Analysis. The predominant difference between Nonlinear Explicit Finite Element Analysis and Nonlinear Implicit Transient Analysis is the time integration scheme. In Nonlinear Explicit Finite Element Analysis, time step is usually smaller, and no matrix assembly and inversion is required in explicit analysis as compared to implicit approaches. The OptiStruct Nonlinear Explicit solution sequence generally supports all major nonlinear features, for instance, Geometric Large Displacement Nonlinearity, Material Nonlinearity, and Contact. Subcase continuation, is currently not supported.

SMP, MPI (DDM), and hybrid parallelization are supported for OptiStruct Nonlinear Explicit Analysis. Single precision and double precision executables are both supported for OptiStruct Explicit Analysis.

Nonlinearity Sources

Geometric Nonlinearity

In analyses involving geometric nonlinearity, changes in geometry as the structure deforms are considered in formulating the constitutive and equilibrium equations. Many engineering applications require the use of large deformation analysis based on geometric nonlinearity. Applications such as metal forming, tire analysis, and medical device analysis.

Material Nonlinearity

Material nonlinearity involves the nonlinear behavior of a material based on current deformation, deformation history, rate of deformation, temperature, pressure, and so on.

Constraint and Contact Nonlinearity

Constraint nonlinearity in a system can occur if kinematic constraints are present in the model. The kinematic degrees-of-freedom of a model can be constrained by imposing restrictions on its movement. For RBE2, RBE3, MPC, and TIE contact, constraints are enforced in a kinematic way by default. RBE3, MPC and TIE switch to penalty approach if over-constraints are detected.

In the case of contact, the constraint condition is enforced by penalty method.

Auto-contact is available by setting the TYPE field to AUTO on the CONTACT Bulk Data Entry.

Follower Load

Applied loads can depend upon the deformation of the structure when large deformations are involved. Geometrically, the applied loads (Forces or Pressure) can deviate from their initial direction based on how the model deforms at the location of application of load. In OptiStruct, if the applied load is treated as follower load, the orientation and/or the integrated magnitude of the load will be updated with changing geometry throughout the analysis.

Applied loads can be indicated as follower loads using the FLLWER Bulk and Subcase Entries, and/or with the PARAM,FLLWER entry.
Note: Follower loading is currently supported for loads specified via DLOAD/TLOAD#, for all pressure loads, FORCE1, FORCE2, MOMENT1 and MOMENT2.

Explicit Finite Element Analysis Method

In explicit finite element method, the time-discretized equation is solved using explicit time integration method. The explicit time integration method is based on the central difference scheme.

Central Difference Method

In the Central Difference method, the equilibrium equation takes the following form:

M a n = f e ( u n , t n )+ f d ( v n , t n )+ f c ( u n , t n )+ f h ( u n , t n ) f i ( u n , t n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCytaiaahg gadaahaaWcbeqaaiaad6gaaaGccqGH9aqpcaWHMbWaaSbaaSqaaiaa dwgaaeqaaOWaaeWaaeaacaWH1bWaaWbaaSqabeaacaWGUbaaaOGaai ilaiaadshadaahaaWcbeqaaiaad6gaaaaakiaawIcacaGLPaaacqGH RaWkcaWHMbWaaSbaaSqaaiaadsgaaeqaaOWaaeWaaeaacaWH2bWaaW baaSqabeaacaWGUbaaaOGaaiilaiaadshadaahaaWcbeqaaiaad6ga aaaakiaawIcacaGLPaaacqGHRaWkcaWHMbWaaSbaaSqaaiaadogaae qaaOWaaeWaaeaacaWH1bWaaWbaaSqabeaacaWGUbaaaOGaaiilaiaa dshadaahaaWcbeqaaiaad6gaaaaakiaawIcacaGLPaaacqGHRaWkca WHMbWaaSbaaSqaaiaadIgaaeqaaOWaaeWaaeaacaWH1bWaaWbaaSqa beaacaWGUbaaaOGaaiilaiaadshadaahaaWcbeqaaiaad6gaaaaaki aawIcacaGLPaaacqGHsislcaWHMbWaaSbaaSqaaiaadMgaaeqaaOWa aeWaaeaacaWH1bWaaWbaaSqabeaacaWGUbaaaOGaaiilaiaadshada ahaaWcbeqaaiaad6gaaaaakiaawIcacaGLPaaaaaa@685E@

Where,
M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCytaaaa@36CD@
Lumped mass matrix
f e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@ , f d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@ , f c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@ , f h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@ and f i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGLbaabeaaaaa@37FC@
Are the external force, damping force, contact force, hourglass force and element internal force vectors, respectively.
a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaCa aaleqabaGaamOBaaaaaaa@3801@
Computed directly from the equilibrium equation.

From a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyyamaaCa aaleqabaGaamOBaaaaaaa@3801@ velocity and displacement vectors can be updated as:

v n + 1 2 = v n 1 2 + 1 2 ( t n + 1 2 t n 1 2 ) a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCODamaaCa aaleqabaGaamOBaiabgUcaRmaaleaameaacaaIXaaabaGaaGOmaaaa aaGccqGH9aqpcaWH2bWaaWbaaSqabeaacaWGUbGaeyOeI0YaaSqaaW qaaiaaigdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaacaWG0bWaaWbaaSqabeaacaWGUbGaey4kaS YaaSqaaWqaaiaaigdaaeaacaaIYaaaaaaakiabgkHiTiaadshadaah aaWcbeqaaiaad6gacqGHsisldaWcbaadbaGaaGymaaqaaiaaikdaaa aaaaGccaGLOaGaayzkaaGaaCyyamaaCaaaleqabaGaamOBaaaaaaa@506C@
d n+1 = d n +( t n+1 t n ) v n+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCizamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaWHKbWaaWba aSqabeaacaWGUbaaaOGaey4kaSYaaeWaaeaacaWG0bWaaWbaaSqabe aacaWGUbGaey4kaSIaaGymaaaakiabgkHiTiaadshadaahaaWcbeqa aiaad6gaaaaakiaawIcacaGLPaaacaWH2bWaaWbaaSqabeaacaWGUb Gaey4kaSYaaSqaaWqaaiaaigdaaeaacaaIYaaaaaaaaaa@4A98@

Where,
t n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa aaleqabaGaamOBaaaaaaa@3810@
Current time
t n + 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaaaaa@39AD@
Next time

The following time increments are defined:

Δ t n = t n + 1 t n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDamaaCaaaleqabaGaamOBaaaakiabg2da9iaadshadaahaaWcbeqa aiaad6gacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiDamaaCaaaleqaba GaamOBaaaaaaa@414D@
Δ t n 1 = t n t n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGccqGH9aqpcaWG 0bWaaWbaaSqabeaacaWGUbaaaOGaeyOeI0IaamiDamaaCaaaleqaba GaamOBaiabgkHiTiaaigdaaaaaaa@4300@

Then,

v n + 1 2 = v n 1 2 + 1 2 ( Δ t n 1 + Δ t n ) a n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCODamaaCa aaleqabaGaamOBaiabgUcaRmaaleaameaacaaIXaaabaGaaGOmaaaa aaGccqGH9aqpcaWH2bWaaWbaaSqabeaacaWGUbGaeyOeI0YaaSqaaW qaaiaaigdaaeaacaaIYaaaaaaakiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaacqGHuoarcaWG0bWaaWbaaSqabeaacaWGUb GaeyOeI0IaaGymaaaakiabgUcaRiabgs5aejaadshadaahaaWcbeqa aiaad6gaaaaakiaawIcacaGLPaaacaWHHbWaaWbaaSqabeaacaWGUb aaaaaa@4FE0@
d n+1 = d n +Δ t n v n+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCizamaaCa aaleqabaGaamOBaiabgUcaRiaaigdaaaGccqGH9aqpcaWHKbWaaWba aSqabeaacaWGUbaaaOGaey4kaSIaeyiLdqKaamiDamaaCaaaleqaba GaamOBaaaakiaahAhadaahaaWcbeqaaiaad6gacqGHRaWkdaWcbaad baGaaGymaaqaaiaaikdaaaaaaaaa@45C9@

Critical Time Step

Unlike implicit nonlinear transient analysis, explicit time integration scheme is conditionally stable.

The explicit solution marches forward in time. The time-step at each time increment is calculated automatically by default (elemental time step is the default), and can be switched between elemental and nodal time step using the TYPE field of the TSTEPE Bulk Data Entry. The DTMIN field on TSTEPE Bulk Data Entry can be used to specify a minimum allowed nodal time increment. The top ten smallest critical timesteps (elemental/nodal) are printed in the .out file by default for Explicit Dynamic Analysis. This can be controlled using PARAM, CRTELEM.

Elemental Time Step

This is the default time step control type for Nonlinear Explicit Analysis. The TYPE field on TSTEPE entry is set to ELEM by default.
  • Solid Elements

    The time step size should satisfy:

    Δ t 2 ω max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDaiabgsMiJoaalaaabaGaaGOmaaqaaiabeM8a3naaBaaaleaaciGG TbGaaiyyaiaacIhaaeqaaaaaaaa@3FA5@

    Where, ω max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3AC4@ denotes the maximum natural frequency of the system.

    For solid elements, a critical time step size is computed from:

    Δ t e = l e Q + ( Q 2 + c 2 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDamaaBaaaleaacaWGLbaabeaakiabg2da9maalaaabaGaamiBamaa BaaaleaacaWGLbaabeaaaOqaaiaadgfacqGHRaWkdaqadaqaaiaadg fadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGJbWaaWbaaSqabeaa caaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWccaqaaiaaig daaeaacaaIYaaaaaaaaaaaaa@461B@

    Where,
    c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@
    Adiabatic sound speed
    Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaaaa@36DF@
    A function of the bulk viscosity coefficients C 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaaaaa@37A5@ and C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaaaaa@37A5@

    Q = C 1 c + C 0 l e max ( 0 , ε ˙ k k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabg2 da9iaadoeadaWgaaWcbaGaaGymaaqabaGccaWGJbGaey4kaSIaam4q amaaBaaaleaacaaIWaaabeaakiaadYgadaWgaaWcbaGaamyzaaqaba GcciGGTbGaaiyyaiaacIhadaqadaqaaiaaicdacaGGSaGaeyOeI0Ia fqyTduMbaiaadaWgaaWcbaGaam4AaiaadUgaaeqaaaGccaGLOaGaay zkaaaaaa@4999@

    Where,
    C 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaaaaa@37A5@ and C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaaIWaaabeaaaaa@37A5@
    Bulk viscosity coefficients, are dimensionless constants with default values of 1.5 and 0.06, respectively.
    l e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaaaaa@37FE@
    Element characteristic length.
    8 node hexahedron
    l e = V e A e max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaakiabg2da9maalaaabaGaamOvamaaBaaaleaa caWGLbaabeaaaOqaaiaadgeadaWgaaWcbaGaamyzamaaBaaameaaci GGTbGaaiyyaiaacIhaaeqaaaWcbeaaaaaaaa@4001@
    10 node tetrahedron
    l e = 1 ( B i j B i j ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaakiabg2da9maalaaabaGaaGymaaqaamaabmaa baGaamOqamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGcbWaaSbaaS qaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWa aSqaaWqaaiaaigdaaeaacaaIYaaaaaaaaaaaaa@42D7@
    6 node pentahedron
    l e = 1 ( B i j B i j ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaakiabg2da9maalaaabaGaaGymaaqaamaabmaa baGaamOqamaaBaaaleaacaWGPbGaamOAaaqabaGccaWGcbWaaSbaaS qaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaWa aSqaaWqaaiaaigdaaeaacaaIYaaaaaaaaaaaaa@42D7@
    4 node tetrahedron
    l e = 3 V e A e max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGLbaabeaakiabg2da9maalaaabaGaaG4maiaadAfadaWg aaWcbaGaamyzaaqabaaakeaacaWGbbWaaSbaaSqaaiaadwgadaWgaa adbaGaciyBaiaacggacaGG4baabeaaaSqabaaaaaaa@40BE@
    Where,
    B i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38C7@
    Symmetric gradient of shape function
    V e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGLbaabeaaaaa@37E8@
    Volume of the hexahedron element
    A e max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGLbWaaSbaaWqaaiGac2gacaGGHbGaaiiEaaqabaaaleqa aaaa@3ADF@
    Maximum area among all the six faces of the hexahedron element
  • Shell Elements

    For shell elements, the time step size is determined by:

    Δ t = L c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bGaeyypa0ZaaSaaaeaacaWGmbaabaGaam4qaaaa aaa@3DE5@

    Where, c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@ is the speed of sounds, which is calculated as:

    c = E ρ ( 1 ν 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbGaeyypa0ZaaOaaaeaadaWcaaqaaiaadweaaeaacqaHbpGC daqadaqaaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaa aakiaawIcacaGLPaaaaaaaleqaaaaa@4356@

    Where,
    E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbaaaa@39A1@
    Young's modulus
    ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaHbpGCaaa@3A97@
    Density
    ν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqaH9oGBaaa@3A8F@
    Poisson's ratio
    L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGfbaaaa@39A1@
    Characteristic length, which is calculated as for quadrilateral elements:
    L = A max ( L 1 , L 2 , L 3 , L 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGmbGaeyypa0ZaaSaaaeaacaWGbbaabaGaciyBaiaacggacaGG 4bWaaeWaaeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadY eadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaamitamaaBaaaleaacaaI ZaaabeaakiaacYcacaWGmbWaaSbaaSqaaiaaisdaaeqaaaGccaGLOa Gaayzkaaaaaaaa@48FF@
    Where,
    A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGbbaaaa@399D@
    Area
    L 1 , L 2 , L 3 , L 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadYeadaWgaaWc baGaaGOmaaqabaGccaGGSaGaamitamaaBaaaleaacaaIZaaabeaaki aacYcacaWGmbWaaSbaaSqaaiaaisdaaeqaaaaa@41EB@
    Lengths of the sides of the triangle elements:
    L = 2 A max ( L 1 , L 2 , L 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGmbGaeyypa0ZaaSaaaeaacaaIYaGaey4fIOIaamyqaaqaaiGa c2gacaGGHbGaaiiEamaabmaabaGaamitamaaBaaaleaacaaIXaaabe aakiaacYcacaWGmbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadYea daWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaaaaaa@4835@
    Where,
    A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGbbaaaa@399D@
    Area
    L 1 , L 2 , L 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadYeadaWgaaWc baGaaGOmaaqabaGccaGGSaGaamitamaaBaaaleaacaaIZaaabeaaaa a@3F76@
    Lengths of the sides of the element
  • Spring Elements

    For spring elements (lumped spring-mass system) there is no wave propagation speed to calculate the critical time-step size.

    The eigenvalue problem for the free-vibration of a spring with nodal masses, m 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaaIXaaabeaaaaa@37D0@ and m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaaIXaaabeaaaaa@37D0@ , and stiffness, k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@ , is:

    [ k k k k ] [ u 1 u 2 ] ω [ m 1 m 2 ] [ u 1 u 2 ] = [ 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafa qabeGacaaabaGaam4AaaqaaiabgkHiTiaadUgaaeaacqGHsislcaWG RbaabaGaam4AaaaaaiaawUfacaGLDbaadaWadaqaauaabeqaceaaae aacaWG1bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyDamaaBaaaleaa caaIYaaabeaaaaaakiaawUfacaGLDbaacqGHsislcqaHjpWDdaWada qaauaabeqaciaaaeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaaGcbaaa baaabaGaamyBamaaBaaaleaacaaIYaaabeaaaaaakiaawUfacaGLDb aadaWadaqaauaabeqaceaaaeaacaWG1bWaaSbaaSqaaiaaigdaaeqa aaGcbaGaamyDamaaBaaaleaacaaIYaaabeaaaaaakiaawUfacaGLDb aacqGH9aqpdaWadaqaauaabeqaceaaaeaacaaIWaaabaGaaGimaaaa aiaawUfacaGLDbaaaaa@563B@

    Since the determinant of the characteristic equation should equal zero, the maximum eigenvalue can be solved for:

    | k ω 2 m 1 k k k ω 2 m 2 | = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaafa qabeGacaaabaGaam4AaiabgkHiTiabeM8a3naaCaaaleqabaGaaGOm aaaakiaad2gadaWgaaWcbaGaaGymaaqabaaakeaacqGHsislcaWGRb aabaGaeyOeI0Iaam4AaaqaaiaadUgacqGHsislcqaHjpWDdaahaaWc beqaaiaaikdaaaGccaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaay 5bSlaawIa7aiabg2da9iaaicdaaaa@4BA4@
    Where, ω max 2 = k ( m 1 + m 2 ) m 1 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aa0 baaSqaaiGac2gacaGGHbGaaiiEaaqaaiaaikdaaaGccqGH9aqpdaWc aaqaaiaadUgadaqadaqaaiaad2gadaWgaaWcbaGaaGymaaqabaGccq GHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaa baGaamyBamaaBaaaleaacaaIXaaabeaakiabgwSixlaad2gadaWgaa WcbaGaaGOmaaqabaaaaaaa@49CA@ .

    Based on the critical time-step of a truss element:

    Δt l c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaiabgsMiJoaalaaabaGaamiBaaqaaiaadogaaaaaaa@3BF4@ and ω max = 2c l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiGac2gacaGGHbGaaiiEaaqabaGccqGH9aqpdaWcaaqaaiaa ikdacaWGJbaabaGaamiBaaaaaaa@3E79@ , you can write:

    Δt 2 ω max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaiabgsMiJoaalaaabaGaaGOmaaqaaiabeM8a3naaBaaaleaaciGG TbGaaiyyaiaacIhaaeqaaaaaaaa@3FA4@

    Approximating the spring masses by using half of the actual modal mass, you obtain:

    Δt=2 m 1 m 2 m 1 + m 2 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDaiabg2da9iaaikdadaGcaaqaamaalaaabaGaamyBamaaBaaaleaa caaIXaaabeaakiaad2gadaWgaaWcbaGaaGOmaaqabaaakeaacaWGTb WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyBamaaBaaaleaacaaI YaaabeaaaaGcdaWcaaqaaiaaigdaaeaacaWGRbaaaaWcbeaaaaa@446E@

    Therefore, in terms of the nodal mass, the critical time step size can be written:

    Δ t e = 2 m n1 m n2 m n1 + m n2 1 k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDamaaBaaaleaacaWGLbaabeaakiabg2da9maakaaabaWaaSaaaeaa caaIYaGaamyBamaaBaaaleaacaWGUbGaaGymaaqabaGccaWGTbWaaS baaSqaaiaad6gacaaIYaaabeaaaOqaaiaad2gadaWgaaWcbaGaamOB aiaaigdaaeqaaOGaey4kaSIaamyBamaaBaaaleaacaWGUbGaaGOmaa qabaaaaOWaaSaaaeaacaaIXaaabaGaam4AaaaaaSqabaaaaa@495A@

    This does not take damping into consideration. If damping is defined, the time step is scaled by:

    Δ t e = 2 m n1 m n2 m n1 + m n2 1 k ( 1 ξ 2 ξ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iDamaaBaaaleaacaWGLbaabeaakiabg2da9maakaaabaWaaSaaaeaa caaIYaGaamyBamaaBaaaleaacaWGUbGaaGymaaqabaGccaWGTbWaaS baaSqaaiaad6gacaaIYaaabeaaaOqaaiaad2gadaWgaaWcbaGaamOB aiaaigdaaeqaaOGaey4kaSIaamyBamaaBaaaleaacaWGUbGaaGOmaa qabaaaaOWaaSaaaeaacaaIXaaabaGaam4AaaaaaSqabaGcdaqadaqa amaakaaabaGaaGymaiabgkHiTiabe67a4naaCaaaleqabaGaaGOmaa aaaeqaaOGaeyOeI0IaeqOVdGhacaGLOaGaayzkaaaaaa@520B@

    Where,
    m n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGUbGaaGymaaqabaaaaa@38C3@ and m n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGUbGaaGymaaqabaaaaa@38C3@
    Nodal masses.
    k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@
    Stiffness in the corresponding degree of freedom.
    ξ= c c cr = c 2mω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdGNaey ypa0ZaaSaaaeaacaWGJbaabaGaam4yamaaBaaaleaacaWGJbGaamOC aaqabaaaaOGaeyypa0ZaaSaaaeaacaWGJbaabaGaaGOmaiaad2gacq aHjpWDaaaaaa@422E@
    c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E7@
    Damping coefficient (for CBUSH elements, it is defined via the Bi fields of the PBUSH Bulk Data Entry).

Nodal Time Step

The time step control can be switched from the default elemental time step to nodal time step by setting the TYPE field on TSTEPE Bulk Entry to NODA.

The nodal time step is calculated as:

Δ t n = 2 m n k n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaOaa aeaadaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaad6gaaeqaaaGcba Gaam4AamaaBaaaleaacaWGUbaabeaaaaaabeaaaaa@426B@

Where,
m n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaad6gaaeqaaaaa@3AE8@
Nodal mass
k n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaad6gaaeqaaaaa@3AE8@
Nodal stiffness (which is calculated from the elemental stiffness)

Nodal stiffness is calculated as:

For each element, the critical time step, Δ t e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaadwgaaeqaaaaa@3C4C@ is calculated first, and each node is assumed to have the same time step, Δ t e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaadwgaaeqaaaaa@3C4C@ , then for each node, you can estimate the nodal stiffness from this equation.

Δ t e = 2 m e i k e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaadwgaaeqaaOGaeyypa0ZaaOaa aeaadaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaadwgadaWgaaadba GaamyAaaqabaaaleqaaaGcbaGaam4AamaaBaaaleaacaWGLbWaaSba aWqaaiaadMgaaeqaaaWcbeaaaaaabeaaaaa@449C@

Where,
i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaale aacaWGPbaaaa@39C6@
The i-th node of the element
m e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaadwgadaWgaaadbaGaamyAaaqabaaaleqa aaaa@3C05@
Nodal mass of the i-th node
k e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaadwgadaWgaaadbaGaamyAaaqabaaaleqa aaaa@3C05@
Nodal stiffness of the i-th node of this element

Therefore, the nodal stiffness of the i-th node is:

k e i = 2 m e i Δ t e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGRbWaaSbaaSqaaiaadwgadaWgaaadbaGaamyAaaqabaaaleqa aOGaeyypa0ZaaSaaaeaacaaIYaGaamyBamaaBaaaleaacaWGLbWaaS baaWqaaiaadMgaaeqaaaWcbeaaaOqaaiabfs5aejaadshadaqhaaWc baGaamyzaaqaaiaaikdaaaaaaaaa@4549@

The final nodal stiffness is:

k n = e k e i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGRbWaaSbaaSqaaiaad6gaaeqaaOGaeyypa0ZaaabuaeaacaWG RbWaaSbaaSqaaiaadwgadaWgaaadbaGaamyAaaqabaaaleqaaaqaai aadwgaaeqaniabggHiLdaaaa@4224@

Using k n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGRbWaaSbaaSqaaiaad6gaaeqaaaaa@3AE6@ , the nodal critical time step Δ t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaad6gaaeqaaaaa@3C55@ can be calculated.

Mass Scaling

  • Elemental Mass Scaling

    The elemental mass can be scaled to increase Δ t e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam iDamaaBaaaleaacaWGLbaabeaaaaa@396D@ , if the scaled elemental critical time step (scaled by DTFAC), falls below DTMIN. This is possible since the elemental time step equation contains the speed of sound term ( c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGJbaaaa@39BF@ ), which is dependent on material density ( ρ ).

  • Nodal Mass Scaling

    The nodal mass m n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGTbWaaSbaaSqaaiaad6gaaeqaaaaa@3AE8@ can be scaled to increase Δ t n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacqqHuoarcaWG0bWaaSbaaSqaaiaad6gaaeqaaaaa@3C55@ , if the scaled nodal critical time step (scaled by DTFAC), falls below DTMIN.

  • Mass Scaling Controls

    Mass scaling in a succeeding Explicit Dynamic Analysis subcase can be controlled through the MSCALE Subcase Information Entry. When MSCALE is not defined, the mass scaling will continue from the preceding Explicit Dynamic Analysis subcase.

Hourglass Control

Hourglass control can be activated using PARAM,HOURGLS or HOURGLS entries. These entries also provide access to adjust hourglass control parameters (HGTYP and HGFAC).

If the HOURGLS entry is input, then it should be chosen via HGID field on the corresponding Property entry to be activated. HOURGLS entry via HGID field overwrites the settings defined via PARAM,HOURGLS.

For Solid Elements

For solid elements with MAT1/MATS1 material, two types of hourglass control are provided:
  • Type 1 (Flanagan and Belytschko, 1981) resists undesirable hourglass modes with viscous damping.
  • Type 2 (Puso, 2000), uses an enhanced assumed strain physical stabilization to provide coarse mesh accuracy with computational efficiency. Type 2 is chosen as the default hourglass type for MAT1/MATS1 material for 1st order CHEXA elements.
The implementations of Type 1 and Type 2 hourglass controls are very similar, except that the hourglass forces are calculated in a different manner.
Note: Type 2 is more computationally intensive; however, performs better in eliminating Hourglass modes, when compared to Type 1. The only limitation of Type 2 is that it may lead to an overly stiff response in bending problems with large plastic deformation.

For MATHE entry, the default hourglass control is Type 4 (Reese, 2005). Type 2 is also available for MATHE entries.

In case of reduced integration for solid elements (ISOPE=URI), hourglass control is turned on by default.
Hourglass Control (Solid Element-based)
Elements Regular Elements (ISOPE=FULL) Regular Elements (ISOPE=URI) Regular Elements (ISOPE=SRI)
CHEXA

(1st order)

Hourglass control is not required Hourglass Control is turned ON by default. 1
For MAT1/MATS1
Hourglass Type 2
For MATHE
Hourglass Type 4
Hourglass control is not required
CPENTA

(1st order)

Hourglass control is not required Hourglass control is not required Hourglass control is not required

For Shell Elements

For shell elements, only two types of hourglass control are provided:
  • Type 1 (Flanagan and Belytschko – viscous form)
  • Type 2 (Flanagan and Belytschko – stiffness form). Type 2 is chosen as the default hourglass type for MAT1/MATS1 material for CQUAD4.
Hourglass Control (Shell Element-based)
Elements Belytschko-Tsay (ISOPE=BT) Belytschko-Wong-Chiang with full projection (ISOPE=BWC)
CQUAD4 Hourglass Control is turned ON by default. 1
For MAT1/MATS1
Hourglass Type 2
Hourglass Control is turned ON by default. 1
For MAT1/MATS1
Hourglass Type 2

Materials

The following table shows the various Hourglass control types and defaults for supported materials.
Hourglass Control (Material-based)
Materials Type 1

Solids and Shells: Flanagan-Belytschko Viscous Form

Type 2

Solids: Puso Enhanced Assumed Strain Stiffness Form

Shells: Flanagan-Belytschko Stiffness Form

Type 4

Solids: Reese Hourglass Control

Shells: Type 4 is not supported for shells

MAT1/MAT2/MAT8/MATS1 Available 2 Default 6 NA
MATHE NA Available 2 Default 6
MATVE NA Available 2 Default 6

Adaptive Dynamic Relaxation

Dynamic relaxation can be used to solve static or quasi-static problems using an Explicit Dynamic Analysis, by avoiding dynamic oscillations. Compared to an implicit analysis, it could be more efficient and robust in some cases with high nonlinearities (for example, with many complicated contacts). Examples of typical applications include 3-point bending simulations of phone structures and spring back simulation in sheet metal forming.

Unlike conventional dynamic relaxation which requires at least one input, OptiStruct supports adaptive dynamic relaxation via the DYREL entry, for which no input parameters are needed. The damping factor is automatically determined based on the system’s highest natural frequency.

Material Failure Criterion

Material failure criterion can be defined using the MATF Bulk Data Entry or the MATS1 Bulk Data Entry (for damage initiation/evolution criteria only). Failure of materials is strongly influenced by the loading conditions and thus, the stress state. Hence, several criteria available refer to the notions of stress triaxiality and optionally to the Lode parameter to describe the loading conditions (uniaxial tension, pure shear, plane strain etc).

To describe a failure criterion based on plasticity and stress states, the value stress triaxiality, η , and the lode parameter, ξ , are needed. For shells only, stress triaxiality is needed.

Stress Triaxiality

Stress triaxiality ( η ) is used to differentiate between compressive and tensile loadings and depends on the trace of the stress tensor. It can determine the position of the stress state on the hydrostatic axis shown in Figure 1.
Figure 1. Description of the stress state on hydrostatic axis and deviatoric plane


It is computed as follows:
η = 1 3 σ x x + σ y y + σ z z σ V M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH3oaAcq GH9aqpdaWcaaqaamaalaaabaGaaGymaaqaaiaaiodaaaWaaeWaceaa cqaHdpWCdaWgaaWcbaGaamiEaiaadIhaaeqaaOGaey4kaSIaeq4Wdm 3aaSbaaSqaaiaadMhacaWG5baabeaakiabgUcaRiabeo8aZnaaBaaa leaacaWG6bGaamOEaaqabaaakiaawIcacaGLPaaaaeaacqaHdpWCda WgaaWcbaGaamOvaiaad2eaaeqaaaaaaaa@4E78@
Where σ V M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaamOvaiaad2eaaeqaaaaa@3B00@ is the equivalent von Mises stress.
The values of stress triaxiality vary from MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaey OhIukaaa@3852@ to + MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaey OhIukaaa@3847@ for solids (in practice bounded to -1 and 1) and -2/3 to 2/3 for shells.
Table 1. Stress triaxiality values for some common stress states
Loading condition Solids Shells
Confined compression -1
Biaxial compression -2/3 -2/3
Uniaxial compression -1/3 -1/3
Pure shear 0.0 0.0
Uniaxial tension 1/3 1/3
Plane strain 0.5751 0.5751
Biaxial tension 2/3 2/3
Confined tension 1

Lode Angle

To describe 3D loading conditions, another important quantity is the lode angle ( θ ) given by:

cos 3 θ = 27 2 J 3 σ V M 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGJbGaai 4BaiaacohadaqadaqaaiaaiodacqaH4oqCaiaawIcacaGLPaaacqGH 9aqpdaWcaaqaaiaaikdacaaI3aaabaGaaGOmaaaadaWcaaqaaiaadQ eadaWgaaWcbaGaaG4maaqabaaakeaacqaHdpWCdaqhaaWcbaGaamOv aiaad2eaaeaacaaIZaaaaaaaaaa@47AE@
Where J 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGkbWaaS baaSqaaiaaiodaaeqaaaaa@391C@ is the third deviatoric invariant.

The lode angle determines the position of the stress state in the deviatoric section. Its value is between 0 (for tension) and π / 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCca GGVaGaaG4maaaa@3A91@ (for compression).
Figure 2. Stress state position on the deviatoric plane depending on the lode angle value


Shear and plane strain condition takes a lode angle value of π / 6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHapaCca GGVaGaaGOnaaaa@3A94@ .

Under plane stress hypothesis (for shell elements), the lode angle and the stress triaxiality are linked and thus one for them can be used to recover the other:

cos 3 θ = 27 2 η η 2 1 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGJbGaai 4BaiaacohadaqadaqaaiaaiodacqaH4oqCaiaawIcacaGLPaaacqGH 9aqpcqGHsisldaWcaaqaaiaaikdacaaI3aaabaGaaGOmaaaacqaH3o aAdaqadaqaaiabeE7aOnaaCaaaleqabaGaaGOmaaaakiabgkHiTmaa laaabaGaaGymaaqaaiaaiodaaaaacaGLOaGaayzkaaaaaa@4AB8@

As it is much easier to deal with normalized value instead of radians, the lode angle is usually switched by the Lode parameter denoted ξ , given by:

ξ = 1 6 π θ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+oaEcq GH9aqpcaaIXaGaeyOeI0YaaSaaaeaacaaI2aaabaGaeqiWdahaaiab eI7aXbaa@4018@

The lode parameter's values are:
  • -1.0 in compression
  • In pure shear or plane strain
  • In tension

Supported Failure Criteria

Currently, four failure criteria are supported for Explicit Dynamic Analysis namely, BIQUAD, TSTRN, tabulated failure criteria and INIEVO.
BIQUAD
The BIQUAD criterion is a stress triaxiality based failure criterion mostly used for ductile metals. Its double quadratic curve shape describes the evolution of plastic strain, ε p f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadchaaeaacaWGMbaaaaaa@39A8@ , at failure with respect to stress triaxiality, η , as shown in the below image.
Figure 3. Failure plastic strain evolution with stress triaxiality for BIQUAD criterion


It then requires five parameters called c1, c2, c3, c4 and c5 respectively corresponding to V1, V2, V3, V4 and V5 value in the MATF Bulk Data Entry. These five values correspond to plastic strain at failure for five different stress states:
  1. Uniaxial compression
  2. Pure shear
  3. Uniaxial tension
  4. Plane strain
  5. Biaxial tension
Note: The parabolic curve computation at high stress triaxiality is made so that c4 is always the minimum value.
For shell elements, strain localization and necking occurring at high strain rate might not be correctly detected as the thickness variation is purely numerical. Thus, failure can be delayed in comparison to an equivalent sized solid element. To avoid that, an additional curve (see the blue curve in the below figure) can be defined for shells using INST parameter (V6), replacing c4 in the high stress triaxiality parabolic curve computation.
Figure 4. Additional failure quadratic curve (in blue) at high stress triaxiality for shells


If enough experimental data is unavailable to identify all the c1, c2, c3, c4 and c5 parameters, a material selector input is also available for BIQUAD criterion. Depending on the keyword MATER value chosen in the list presented above, the c1, c2, c4 and c5 parameters will be automatically computed with respect to c3 value, as shown below.
c 1 = r 1 c 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaig dacqGH9aqpcaWGYbGaaGymaiabgwSixlaadogacaaIZaaaaa@3E3E@ c 2 = r 2 c 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaik dacqGH9aqpcaWGYbGaaGOmaiabgwSixlaadogacaaIZaaaaa@3E40@ c 3 = c 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaio dacqGH9aqpcaWGJbGaaG4maaaa@3A44@ c 4 = r 4 c 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaais dacqGH9aqpcaWGYbGaaGinaiabgwSixlaadogacaaIZaaaaa@3E44@ c 5 = r 5 c 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaaiw dacqGH9aqpcaWGYbGaaGynaiabgwSixlaadogacaaIZaaaaa@3E46@
The value c3 is then the only expected parameter when using material input for BIQUAD criterion. However if no c3 value is specified, a default value of c3 will automatically be set.
Table 2. Automatic parameters settings for MATER keyword
Keyword c3 (Default) r1 r2 r4 r5
MILD 0.60 3.5 1.6 0.6 1.5
HSS 0.50 4.3 1.4 0.6 1.6
UHSS 0.12 5.2 3.1 0.8 3.5
AA5182 0.30 5.0 1.0 0.4 0.8
AA6082 0.17 7.8 3.5 0.6 2.8
PA6GF30 0.10 3.6 0.6 0.5 0.6
PP T40 0.11 10.0 2.7 0.6 0.7
For each timestep, the plastic strain at failure, ε p f ( η ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadchaaeaacaWGMbaaaOGaaiikaiabeE7aOjaacMcaaaa@3CB7@ , is estimated according to the stress triaxiality and the parabolic curves. This allows increases to the damage variable accounting for the stress state history:
D = t = 0 Δ ε p ε p f ( η ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maaqahabaWaaSaaaeaacqGHuoarcqaH1oqzdaWgaaWcbaGaamiC aaqabaaakeaacqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadAgaaaGcca GGOaGaeq4TdGMaaiykaaaaaSqaaiaadshacqGH9aqpcaaIWaaabaGa eyOhIukaniabggHiLdaaaa@493B@
TSTRN
The TSTRN failure criterion is a strain based damage model and is supposed to be fully coupled (DAMAGE keyword activated and D C = 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGdbaabeaakiabg2da9iaaicdaaaa@397B@ ). However, you have the freedom to use it as a failure criterion or a pure output damage variable. It considers a linear evolution of the damage variable between two starting and ending strain values, in tensile loading conditions ( η > 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaey Opa4JaaGimaaaa@3962@ ):
D = ε ε s t a r t ε e n d ε s t a r t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maalaaabaGaeqyTduMaeyOeI0IaeqyTdu2aaSbaaSqaaiaadoha caWG0bGaamyyaiaadkhacaWG0baabeaaaOqaaiabew7aLnaaBaaale aacaWGLbGaamOBaiaadsgaaeqaaOGaeyOeI0IaeqyTdu2aaSbaaSqa aiaadohacaWG0bGaamyyaiaadkhacaWG0baabeaaaaaaaa@4D35@
A couple of values ε s t a r t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadohacaWG0bGaamyyaiaadkhacaWG0baabeaaaaa@3C8E@ and ε e n d MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadwgacaWGUbGaamizaaqabaaaaa@3A8D@ are then needed in the card. V1 and V2 values corresponds to starting and ending von Mises equivalent strain. The von Mises equivalent strain is computed as follows:
ε = 2 3 ε x x 2 ' + ε y y 2 ' + ε z z 2 ' + 2 ε x y 2 + 2 ε y z 2 + 2 ε z x 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaey ypa0ZaaOaaaeaadaWcaaqaaiaaikdaaeaacaaIZaaaamaabmaabaGa eqyTdu2aa0baaSqaaiaadIhacaWG4baabaGaaGOmaaaakmaaCaaale qabaGaai4jaaaakiabgUcaRiabew7aLnaaDaaaleaacaWG5bGaamyE aaqaaiaaikdaaaGcdaahaaWcbeqaaiaacEcaaaGccqGHRaWkcqaH1o qzdaqhaaWcbaGaamOEaiaadQhaaeaacaaIYaaaaOWaaWbaaSqabeaa caGGNaaaaOGaey4kaSIaaGOmaiabew7aLnaaDaaaleaacaWG4bGaam yEaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqyTdu2aa0baaSqaaiaa dMhacaWG6baabaGaaGOmaaaakiabgUcaRiaaikdacqaH1oqzdaqhaa WcbaGaamOEaiaadIhaaeaacaaIYaaaaaGccaGLOaGaayzkaaaaleqa aaaa@6095@
Where ε ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaW baaSqabeaacaGGNaaaaaaa@3872@ is the deviatoric strain tensor.
If V3 and V4 values are specified, they correspond to starting and ending major principal strain.
ε = max ( ε 1 , ε 2 , ε 3 ) > 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaey ypa0JaciyBaiaacggacaGG4bGaaiikaiabew7aLnaaBaaaleaacaaI XaaabeaakiaacYcacqaH1oqzdaWgaaWcbaGaaGOmaaqabaGccaGGSa GaeqyTdu2aaSbaaSqaaiaaiodaaeqaaOGaaiykaiabg6da+iaaicda aaa@47BB@
Note: V3 and V4 values are always prioritized when both V1/V2 and V3/V4 pairs are specified.
Tabulated failure criteria
The TAB failure criterion is used to give as much freedom as possible to describe a plastic strain based tabulated criterion. The TABLEMD entry defined by EPS_TID describes the map showing the evolution of plastic strain at failure, ε p f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadchaaeaacaWGMbaaaaaa@39A8@ , with respect to stress triaxiality and, optionally for solid elements, with lode parameter, ξ , as shown in Figure 5.
Figure 5. Tabulated failure criterion map showing the evolution of plastic strain at failure with respect to stress triaxiality and lode parameter


For solid elements, the entire map with all possible couple of values, ( η , ξ ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeE 7aOjaacYcacqaH+oaEcaGGPaaaaa@3B6C@ , is considered. However, for shells stress triaxiality and lode parameter are linked due to plane stress conditions. Hence, only the plane stress (blue line in Figure 5) is considered.

The V1 value is a scale factor that allows you to quickly increase or decrease in entire map.

The damage variable evolution is given by a specific formula using the parameter in defined in V2 value:
D = t = 0 Δ ε p ε p f ( η , ξ ) n D 1 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9maaqahabaWaaSaaaeaacqGHuoarcqaH1oqzdaWgaaWcbaGaamiC aaqabaaakeaacqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadAgaaaGcca GGOaGaeq4TdGMaaiilaiabe67a4jaacMcaaaaaleaacaWG0bGaeyyp a0JaaGimaaqaaiabg6HiLcqdcqGHris5aOGaeyyXICTaamOBaiabgw SixlaadseadaahaaWcbeqaamaabmaabaGaaGymaiabgkHiTmaalaaa baGaaGymaaqaaiaad6gaaaaacaGLOaGaayzkaaaaaaaa@5724@
Thus, including its own current value, the damage variable evolution is taking into account the stress state history but also the damage history. The exponent n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E6@ allows to indirectly change the shape of the damage evolution with respect to plastic strain as presented in Figure 6. The increase of the n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E6@ exponent parameter tends to delay the stress softening effect as shown.
Figure 6. Effect of n parameter on the damage versus plastic strain evolution (left picture) and effect of n parameter on a single element uniaxial tension behavior (right picture)




You can use the TAB criterion defining only the first line of parameters (EPS_TID, V1 and V2). In this case, like any other criterion available, you can activate the element deletion using DAMAGE, chose the beginning of stress softening with the constant value for critical damage DC and the shape of the stress softening using EXP.

Another approach of stress softening approach with TAB criterion is called the necking-controlled approach.

To use this new approach, the two first parameters of the second line INST_TID and V6 must be defined. INST_TID defines the ID of a TABLEMD entry defining a map showing the evolution of the plastic strain value (denoted ε p l o c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadchaaeaacaWGSbGaam4Baiaadogaaaaaaa@3B8A@ ) for which necking instability and thus strain localization starts, with respect to stress triaxiality and, optionally, lode parameter. It is an instability limit curve or map mostly defined at high stress triaxiality as the one described above for BIQUAD criterion in Figure 3 and is supposed to be lower than the failure curve/map to have an effect. It can be used with solids or shells.

This INST second map allows to compute the evolution of a new variable called necking-triggering variable and denoted f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36DF@ . Its evolution is very similar to the damage variable one:

f = t = 0 Δ ε p ε p l o c ( η , ξ ) n f 1 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiabg2 da9maaqahabaWaaSaaaeaacqGHuoarcqaH1oqzdaWgaaWcbaGaamiC aaqabaaakeaacqaH1oqzdaqhaaWcbaGaamiCaaqaaiaadYgacaWGVb Gaam4yaaaakiaacIcacqaH3oaAcaGGSaGaeqOVdGNaaiykaaaaaSqa aiaadshacqGH9aqpcaaIWaaabaGaeyOhIukaniabggHiLdGccqGHfl Y1caWGUbGaeyyXICTaamOzamaaCaaaleqabaWaaeWaaeaacaaIXaGa eyOeI0YaaSaaaeaacaaIXaaabaGaamOBaaaaaiaawIcacaGLPaaaaa aaaa@594A@

Once this variable reaches the value 1, a stress softening is triggered (defined by Comment 12 in the MATF Bulk Data Entry). However, instead of using the constant value, D C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGdbaabeaaaaa@37B1@ , in the MATF entry, the parameter, D C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGdbaabeaaaaa@37B1@ , becomes an integration point. Thus D C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGdbaabeaaaaa@37B1@ can be very different from one element to another depending on the history of the element stress state.

Thus, when INST_TID is used, the D C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGdbaabeaaaaa@37B1@ value corresponds to the value taken by the damage variable D MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BD@ at the exact moment when f MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36DF@ reaches or overtakes the value 1. In other words, D C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGdbaabeaaaaa@37B1@ is the D MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraaaa@36BD@ value when the necking criterion is reached the first time. Then, D C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGdbaabeaaaaa@37B1@ remains untouched until the end of the simulation.

D = Δ D f = Δ f D C = 1 while f < 1 D when f 1 σ = σ e f f 1 D D c 1 D c exp MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGeb Gaeyypa0Zaa8qaaeaacqGHuoarcaWGebaaleqabeqdcqGHRiI8aaGc baGaamOzaiabg2da9maapeaabaGaeyiLdqKaamOzaaWcbeqab0Gaey 4kIipaaOqaaiaadseadaWgaaWcbaGaam4qaaqabaGccqGH9aqpdaGa baqaauaabeqaceaaaeaafaqabeqadaaabaGaaGymaaqaaiaabEhaca qGObGaaeyAaiaabYgacaqGLbaabaGaamOzaiabgYda8iaaigdaaaaa baqbaeqabeWaaaqaaiaadseaaeaacaqG3bGaaeiAaiaabwgacaqGUb aabaGaamOzaiabgwMiZkaaigdaaaaaaaGaay5EaaaabaGaeq4WdmNa eyypa0Jaeq4Wdm3aaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaGcda qadaqaaiaaigdacqGHsisldaqadaqaamaalaaabaGaamiraiabgkHi TiaadseadaWgaaWcbaGaam4yaaqabaaakeaacaaIXaGaeyOeI0Iaam iramaaBaaaleaacaWGJbaabeaaaaaakiaawIcacaGLPaaadaahaaWc beqaaiGacwgacaGG4bGaaiiCaaaaaOGaayjkaiaawMcaaaaaaa@6CE4@
Unlike the D C MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGdbaabeaaaaa@37B1@ parameter, the exponent (EXP) is a constant parameter over all elements.

This necking-controlled approach can offer a higher predictivity for a large range of stress state but needs to define an instability map especially at high stress triaxiality when necking is more likely to happen.

Finally, parameters V7 and V8 values are stress triaxiality boundaries for element size scaling defined below. If this pair of values are defined, the size scaling only occurs when:

V 7 < η < V 8 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaaiE dacqGH8aapcqaH3oaAcqGH8aapcaWGwbGaaGioaaaa@3CE1@

Damage initiation and evolution (INIEVO)
INIEVO failure criterion is very specific and provides the ability to define a failure approach based on the use of a DMGINI Bulk Data Entry and, optionally a DMGEVO Bulk Data Entry.

For the DMGINI Bulk Data Entry, only DUCTILE criterion is available. For the DMGEVO Bulk Data Entry, only DISP and ENERGY evolution are available.

This criterion can be defined using two methods:
  1. The DAMAGE continuation line in the MATS1 Bulk Data Entry. This method is supported both for Implicit and Explicit Dynamic Analysis.
  2. CRI=INIEVO in the MATF Bulk Data Entry. This method is supported only for Explicit Dynamic Analysis.
Note: For INIEVO, strain rate dependency and element size dependency are not available.

Problem Setup

Input

  • Activation:

    A Nonlinear Explicit Subcase can be identified via ANALYSIS=NLEXPL. The TTERM Subcase Entry is mandatory to define the termination time. Additionally, a TSTEPE Subcase Entry which points to the corresponding TSTEPE Bulk Data Entry is also available for Nonlinear Explicit Analysis. If TSTEPE Subcase Entry is not defined, then ANALYSIS=NLEXPL is mandatory in conjunction with TTERM. Otherwise, TTERM and TSTEPE together is sufficient to identify the Explicit Nonlinear subcase. Nonlinear Explicit Analysis is always large displacement analysis.

  • Initial Conditions:

    The initial conditions can be defined using IC Subcase Entry and in conjunction with the TIC Bulk Data Entry. The initial temperature field can be defined using TEMP(INIT) which uses the referenced temperature field to lookup the TABLEMD entry for the initial material data on the corresponding MATS1 entry.

  • Loading:

    Loads can be defined using LOAD, DLOAD, and TLOAD# Bulk Data Entries which should be referenced in the subcase using DLOAD Subcase Entry. For reference via LOAD Subcase Entry or TLOAD# Bulk Entry, only the FORCE, FORCE1, FORCE2, MOMENT, MOMENT1, MOMENT2, PLOAD2, PLOAD4, GRAV, ACCEL2, and SPCD entries are supported for loading.

  • Boundary Conditions:

    Boundary Conditions can be applied via SPC Bulk Data which are referenced by a corresponding SPC subcase entry. MPCs are not supported currently.

  • Supported Elements:
    Solid Elements
    4-noded CTETRA, 10-noded CTETRA, 8-noded CHEXA, and 6-noded CPENTA elements are supported.
    Shell Elements
    CTRIA3 and CQUAD4 are supported.
    One-dimensional Elements
    CBUSH, CBEAM, and CBAR elements are supported.
    Currently, only Belytschko-Schwer Beam formulation is supported for CBAR/CBEAM 1D elements in Explicit Analysis.
    Mass Elements
    CONM2 is supported.
    Note:
    • Offset, on elements or property for Shell elements is supported for Explicit Analysis.
    • In case of CBUSH elements, Mi fields in PBUSH definition will be used for mass and inertia calculations. Refer to PBUSH in the Reference Guide for more details.
    • For CBEAM, CBAR elements,
      • The continuation lines on PBEAM/PBAR are not supported with Explicit Analysis.
      • Pin flags (PA and PB) are supported with Explicit Analysis.
  • Supported Materials:

    The following materials are currently supported for Explicit Analysis:

    MAT1, MAT2, MAT8, MATS1, MATHE, and MATVE materials are supported. The MATVE entry should be defined under MATHE entry.

  • Linear Materials
    Isotropic Materials
    MAT1
    Anisotropic Materials
    MAT2, MAT9
    Orthotropic Materials
    MAT8, MAT9OR
  • Nonlinear Materials
    Elasto-plasticity (MATS1)
    Johnson-Cook
    Crushable Foam
    Cowper-Symonds
    Johnson-Holmquist
    Honeycomb (MATHCOMB)
    Hyper-elasticity (MATHE)
    MOONEY
    MOOR
    RPOLY
    NEOH
    YEOH
    ABOYCE
    OGDEN
    FOAM
    MARLOW
    Visco-elasticity (MATVE)
    Prony
    BBOYCE (Bergstrom Boyce)
    Cohesive Zone Modeling (CZM)
    MCOHED (Traction-Opening)
    MATS1 (Cohesive Continuum)
  • Failure Models:
    Failure (MATF)
    BIQUAD
    TSTRN
    TAB
    PLAS
    JOHNSON
    Damage Initiation and Evolution
    MATS1 (via DAMAGE continuation line – DMGINI and DMGEVO)
    MATF (INIEVO criterion – DMGINI and DMGEVO)
    Brittle Damage
    MATBRT
    MATF (RANKINE)
  • Integration Schemes:

    For explicit analysis, the element integration scheme can be changed using the ISOPE field on the PSOLID, PLSOLID, PSHELL, PCOMP, PCOMPG, PCOMPP entries, or via PARAM,EXPISOP. The settings on the ISOPE field will overwrite the settings on PARAM,EXPISOP.

Example:
SUBCASE 10
   ANALYSIS=NLEXPL
   SPC = 1
   DLOAD = 2
   TSTEPE = 2
   NLOUT = 23
   IC = 12
   TTERM = 2.0
.
.
BEGIN BULK
TSTEPE,2,ELEM,0.8
NLOUT,23,NINT,12
IC,12,33,3,0.2
SPC,1,45,123,0.0
TLOAD1,2,3,,0,8
TABLED1,8
+,0.0,0.0,2.0,8.0,ENDT,ENDT

The NLDEBUG, CONT2TIE and NLDEBUG, RMNLMAT are available to simplify the model in certain ways to aid in debugging.

Output

The typical output entries (DISPLACEMENT, VELOCITY, and ACCELERATION) can be used to request corresponding output for Nonlinear Explicit Analysis. The NLOUT Subcase and Bulk Data Entries can be used to request intermediate results, only with NINT parameter support.

The NLOUT Bulk Data Entry and NLOUT Subcase Information Entry can be used to control incremental output. For Nonlinear Explicit Analysis, only the NINT field is supported for NLOUT. The NLADAPT entry is not supported for Nonlinear Explicit Analysis, and no other TSTEP# entries are supported, except TSTEPE entry.

Currently, only Hyper3D (_expl.h3d) and HyperGraph presentation format (_expl.mvw) files are supported. Nonlinear Explicit Analysis results are not output to the regular .h3d and .mvw files, but instead are output to _expl.h3d and _expl.mvw files, respectively.
_expl.h3d
Contours for Displacement, Rotation, Velocity, Acceleration, Strain, Strain rate (in case of rate dependent plasticity), Stress, Plastic Strain, CBUSH element force, Composite stress, Composite Strain and Composite failure index are output.
When a monitor volume is defined via the MONVOL Bulk Data Entry, the following output results are available by default. Pressure, Temperature, Volume, Area, Mass, Internal Energy, Mass flow rate, Vent Area and Leaked Mass.
_expl.mvw
This session file automatically loads the corresponding _expl.h3d file and allows you to plot the results output in the _expl.h3d file.
_s<ID>_e.expl
Curves for Internal energy, Elastic Contact energy, Plastic Contact energy, Kinetic energy, Hourglass energy, and Plastic Dissipation energy are output
_expl_energy.mvw
This session file automatically loads the corresponding _s<ID>_e.expl file and allows you to plot the various energy output.
.out
For explicit, the .out file contains Time Cycle information (based on PARAM,NOUTCYC), Current time, Current Time Step, Maximum Strain Energy, Element ID for which the information is printed, Kinetic Energy, Contact Work, Total Energy, Maximum Penetration, Node ID associated with this maximum penetration, Maximum Normal Work, Node ID associated with this Maximum Normal Work, Mass Change Ratio. which is the information regarding the scaled mass change after mass scaling – this is calculated as: (current mass-original mass)/(original mass).
_expl.cntf
An ASCII file that contains the contact force output results on the main surface and is activated when the OPTI format is specified in the CONTF I/O Options Entry. The output includes Normal/Tangential Force, Magnitude and Area of contact. This output is available for each explicit time-step.
The frequency of output in this file can be controlled using the NINT field in the NLOUT entry.
_TH.h5
Time history output for Explicit Dynamic analysis is available in a _TH.h5 file HDF5 format file. In some situations, a subset of results (for example, energy) is required to be output at a high output frequency. But increasing output frequency in NLOUT would affect all results, leading to enormous file size and this may be undesired. Time history output is a useful and effective solution for such cases.
For more details regarding supported results, refer to the THIST Bulk Data Entry.
Table 3. Explicit Dynamic Analysis Quick Summary
Nonlinear Explicit Analysis Subcase or I/O Bulk Data Comments
Activation:
Subcase Type ANALYSIS=NLEXPL (optional) NA If TSTEPE is not specified, then ANALYSIS=NLEXPL is mandatory.
Nonlinear Explicit Activation TTERM (mandatory)

TSTEPE (optional)

TSTEPE (optional) If TSTEPE is not specified, then ANALYSIS=NLEXPL is mandatory.
Loads:
Nodal Loads LOAD, DLOAD If LOAD in subcase is used:

FORCE, FORCE1, FORCE2, MOMENT, MOMENT1, and MOMENT2.

If DLOAD in subcase is used:

TLOAD1 or TLOAD2.

DLOAD can be used to combine multiple TLOADi data.

For nodal loads, EXCITEID on TLOADi data can be FORCE, FORCE1, FORCE2, MOMENT, MOMENT1, and MOMENT2.

TYPE field on TLOADi data can be set to 0 or LOAD for this case.
Surface Loads LOAD, DLOAD If LOAD in subcase is used:

PLOAD2 and PLOAD4.

If DLOAD in subcase is used:

TLOAD1 or TLOAD2.

DLOAD can be used to combine multiple TLOADi data.

For Surface loads, EXCITEID on TLOADi data can be PLOAD1 and PLOAD4.

TYPE field on TLOADi data can be set to 0 or LOAD for this case.
Body Loads LOAD, DLOAD If LOAD in subcase is used:

GRAV and ACCEL2.

If DLOAD in subcase is used:

TLOAD1 or TLOAD2.

DLOAD can be used to combine multiple TLOADi data.

For Body loads, EXCITEID on TLOADi data can be GRAV and ACCEL2.

TYPE field on TLOADi data can be set to 0 or LOAD for this case.
Enforced Displacement, Velocity, Acceleration LOAD, DLOAD If LOAD in subcase is used:

Enforced displacement, velocity, or acceleration using SPCD or SPCD.

If DLOAD in subcase is used:

TLOAD1 or TLOAD2.

DLOAD can be used to combine multiple TLOADi data.

For Enforced loading, EXCITEID on TLOADi data can be SPC or SPCD.

TYPE field on TLOADi data can be set to:
1 or DISP
For enforced displacement,
2 or VELO
For enforced velocity,
3 or ACCE
For enforced acceleration.
Follower Loading FLLWER FLLWER

PARAM,FLLWER

Loads can be chosen as follower loads, similar to implicit nonlinear analysis.

Follower loading is currently supported for loads specified via DLOAD/TLOAD#, for all pressure loads, FORCE1, FORCE2, MOMENT1 and MOMENT2.

Boundary Conditions:
Single Point Constraints SPC SPC
Initial Conditions:
Initial Displacement TIC IC
Initial Velocity TIC IC
Time Step Control:
Basic time controls TSTEPE TSTEPE TYPE field on TSTEPE entry to choose between elemental and nodal time step controls.

DTMIN field can define minimum time step below which nodal/elemental mass scaling is activated.

DTFAC field can define scale factor for stable time increments.

Mass Elements:
Mass Elements Support CONM2 is supported
Structural Elements:
Supported Structural Elements NA One-dimensional elements: CBUSH, CBEAM, and CBAR are supported;
Shells
CTRIA3 and CQUAD4 elements.
Solids
4-noded CTETRA, 10-noded CTETRA, 8-noded CHEXA, and 6-noded CPENTA elements.
Integration Schemes NA ISOPE field on PSOLID, PLSOLID, or PSHELL.

PARAM,EXPISOP (parameter is only supported for solid elements).

ISOPE field will overwrite settings defined on PARAM,EXPISOP.

Refer to Elements in the User Guide for more details regarding Integration Schemes.

Constraints:
Support for Rigids NA RBE2, RBE3 and RBODY are supported.
Materials:
Supported Materials NA Shells: MAT1, MAT2, MAT8 and MATS1.

Solids: MAT1, MATS1, MATVE, MAT9OR, MCOHED, and MATHE.

See analysis_nonlinear_explicit_r.htm#analysis_nonlinear_explicit_problem_setup_r_reference_ywr_2hb_shb__analysis_nonlinear_explicit_problem_setup_r_ph_tll_hfp_xbc for more information.
Properties:
Supported Properties NA PSHELL, PSOLID, PLSOLID, PCOMP, PCOMPG, PCOMPP, PCOMPLS PLY, STACK and DRAPE entries are supported.
Contact:
Supported Contact Types NA CONTACT and TIE N2S and S2S contact discretization are supported.

SMALL, FINITE, and CONSLI contacts are supported.

Auto-Contact is supported by setting the TYPE field to AUTO on CONTACT Bulk Data Entry.

For TIE in explicit:
1
Only kinematic TIE is supported. That is, the kinematic condition is precisely constrained instead of using the penalty-based method.
2
Hierarchy in kinematic TIE is not supported (that is, secondary node of a TIE cannot be the main node in another TIE).
3
Over-constrained TIEs are ignored (only the first constraint for such cases, based on the order of input in the .fem file, is retained).
4
All such hierarchy and over constrained TIE nodes are printed into grid SET in the *_badtied.fem file.
Coordinate Systems:
Supported User-defined Coordinate Systems NA CORD2R, CORD1C, CORD2C, CORD1S, and CORD2S
Output:
ASCII Output NA PARAM,NOUTCYC Only explicit time cycle summary and corresponding information like Time steps, Energy, Maximum Penetration, Mass Change Ratio, and so on are printed to the .out file.PARAM,NOUTCYC can be used to choose the frequency of summary output in the .out file.
Binary File Output DISP, VELOCITY, ACCELERATION, STRESS, STRAIN (includes Plastic Strain), Strain rate for rate dependent plasticity problems, CBUSH, FORCE, CSTRESS, CSTRAIN, CFAILURE, ESE NA Results are output only to the _expl.h3d and _expl.mvw files.
_expl.h3d
The displacement, rotation, velocity, acceleration, stress, strain, strain rate (for rate dependent plasticity problems), CBUSH force, plastic strain composite stress, composite strain and composite failure index results output.
_expl.mvw
Automatically loads the corresponding _expl.h3d file and allows you to plot the results output in the _expl.h3d file.
_s<ID>_e.expl
Contains curves for Internal energy, Elastic Contact energy, Plastic Contact energy, Kinetic energy, Hourglass energy, and Plastic Dissipation energy output.
_expl_energy.mvw
Automatically loads the corresponding _s<ID>_e.expl file and allows you to plot the various energy output.

ESE output is available with COMP and OCOMP group options, only in the .h3d format.

THIST can be used to generate time history output for certain results in a _TH.h5 file.

When a monitor volume is defined via the MONVOL Bulk Data Entry, the following output results are available by default – Pressure, Temperature, Volume, Area, Mass, Internal Energy, Mass flow rate, Vent Area and Leaked Mass.

Output Control NLOUT, THIST NLOUT, THIST Only the NINT field is supported for Explicit Analysis.

The NLADAPT entry is not supported for Nonlinear Explicit Analysis.

Miscellaneous:
Large Displacement NA NA Explicit Nonlinear Analysis is large displacement nonlinear analysis by default.
Adaptive Dynamic Relaxation DYREL NA
Monitor Volume NA MONVOL Defines a one-chamber gas filled structure with hybrid input of inflated gas.
Material Failure Criterion NA MATF or MATS1 (for damage initiation and evolution criteria only).
Mass scaling control MSCALE NA
Hourglass Control HOURGLS (HGID field references this card on PSOLID/PLSOLID/PSHELL)

PARAM,HOURGLS

The default hourglass values are overwritten by HOURGLS entry referenced on PSOLID/PLSOLID/PSHELL entry or PARAM,HOURGLS.

HGID via HOURGLS entry overwrites PARAM,HOURGLS.

For more information, refer to Hourglass Control.

Optimization:
Optimization Support Not Supported Not Supported Not Supported
1 The defaults can be overwritten by user-defined PARAM,HOURGLS or HOURGLS entry (referenced by HGID on property entry)
2 Users can turn on hourglass control using PARAM,HOURGLS or HOURGLS entry (referenced by HGID on property entry)
3 For solid elements, ISOPE field on PSOLID/PLSOLID entries can be used to switch between integration schemes
4 Hourglass control is not applicable for CTETRA (1st and 2nd order)
5 For shell elements, ISOPE field on PSHELL entry can be used to switch between integration schemes
6 The defaults can be overwritten by user-defined PARAM,HOURGLS or HOURGLS entry (referenced by HGID on property entry). Note that for MAT1/MATS1/MATHE, the defaults only apply in the case of 1st order CHEXA elements. For CPENTA elements, turn ON hourglass control, if required.
7 Some materials listed here are not supported for shells (for instance, MATHE and MATVE)