/INTER/TYPE11

Block Format Keyword This interface simulates impact between edge to Edge or lines. A line can be a beam or truss element or a shell edge or spring elements.

The interface properties are:
  • Impacts occur between a main and a secondary line.
  • A secondary line can impact on one or more main lines.
  • A line can belong to the main and the secondary side. This allows self-impact.
  • This interface can be used in addition to /INTER/TYPE7 to solve the edge to edge limitation of interface TYPE7.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/INTER/TYPE11/inter_ID/unit_ID
inter_title
line_IDs line_IDm Istf Ithe Igap Irem_gap Idel
Stmin Stmax %mesh_size dtmin Iform sens_ID
Stfac Fric Gapmin Tstart Tstop
IBC Inacti VISs VISF Bumult
fric_ID
Read this input, if Ithe > 0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Kthe fct_IDK AscaleK Tint Ithe_form
Frad Drad

Definition

Field Contents SI Unit Example
inter_ID Interface identifier.

(Integer, maximum 10 digits)

unit_ID Unit identifier.

(Integer, maximum 10 digits)

inter_title Interface title.

(Character, maximum 100 characters)

line_IDs Secondary line identifier. 3

(Integer)

line_IDm Main line identifier. 3
= 0
The contact is self-impacting using the lines defined in line_IDs.

(Integer)

Istf Stiffness definition flag.
= 0
Set to the value defined in /DEFAULT/INTER/TYPE11.
= 1
Interface stiffness is entered as Stfac.
= 2
Interface stiffness is the average of the main and secondary stiffness.
= 3
Interface stiffness is the maximum of the main and secondary stiffness.
= 4
Interface stiffness is the minimum of the main and secondary stiffness.
= 5 Default, if /DEFAULT/INTER/TYPE11 is not defined
Interface stiffness is the main and secondary stiffness in series.

(Integer)

Ithe Heat transfer flag.
= 0 (Default)
No heat transfer
= 1
Heat transfer is activated.

(Integer)

Igap Gap/element option flag.
= 0
Set to the value defined in /DEFAULT/INTER/TYPE11.
= 1
Gap varies accordingly to the characteristics of the impacted main line and the impacting secondary node.
= 3
Gap varies according to the characteristics of the impacted main line and the impacting secondary node + gap is taken into account the size of the elements.
= 1000 Default, if /DEFAULT/INTER/TYPE11 is not defined
Gap is constant equal to Gapmin.

(Integer)

Irem_gap Flag for deactivating neighboring secondary lines if element size < gap value, in case of self-impact contact. 18
= 0
Set to the value defined in /DEFAULT/INTER/TYPE11
= 1 Default, if /DEFAULT/INTER/TYPE11 is not defined
No deactivation of secondary line segments.
= 2
Deactivation of secondary line segments.
Stmin Minimum stiffness (used only when Istf1).

(Real)

[ N m ]
Stmax Maximum stiffness (used only when Istf1).

Default = 1030 (Real)

[ N m ]
%mesh_size Percentage of mesh size (used only when Igap = 3).

Default = 0.4 (Real)

dtmin Minimum interface time step. 12

(Real)

[ s ]
Iform Friction penalty formulation type. 14
= 0
Set to the value defined in /DEFAULT/INTER/TYPE11.
= 1 Default, if /DEFAULT/INTER/TYPE11 is not defined
Viscous (total) formulation.
= 2
Stiffness (incremental) formulation.

(Integer)

sens_ID Sensor ID to activate/deactivate the interface. 13

If an ID sensor is defined, the activation/deactivation of interface is based on sensor and no more on Tstart, Tstop.

(Integer)

Idel Node and segment deletion flag. 4
= 0
Set to the value defined in /DEFAULT/INTER/TYPE11.
= 1
When all the elements (4-node shells, 3-node shells, solids, beams, trusses, and springs) associated to one segment are deleted, the segment is removed from the interface. It is also removed in case of explicit deletion using Radioss Engine keyword /DEL in the Engine file.
Additionally, non-connected nodes are removed from the interface.
= 2
When an element (4-node shell, 3-node shell, solid, beam, truss, and springs) is deleted, the corresponding segment is removed from the interface. It is also removed in case of explicit deletion using Radioss Engine keyword /DEL in the Engine file.
Additionally, non-connected nodes are removed from the interface.
= -1
Same as =1, except non-connected nodes are not removed from the secondary side of the interface.
= -2
Same as =2, except non-connected nodes are not removed from the secondary side of the interface.
= 1000 Default, if /DEFAULT/INTER/TYPE11 is not defined
No deletion.

(Integer)

Stfac Stiffness scale factor applied to main side of the interface (if Istf1).

Default = 1.0 (Real)

Interface stiffness (if Istf = 1).

Default = 1.0 (Real)

[ N m ]
Fric Coulomb friction.

(Real)

Gapmin Minimum gap for impact activation.

(Real)

[ m ]
Tstart Start time.

(Real)

[ s ]
Tstop Temporary deactivation time.

(Real)

[ s ]
IBC Deactivation flag of boundary conditions at impact.

(Booleans)

Inacti Deactivation stiffness flag. 11
= 0
Set to the value defined in /DEFAULT/INTER/TYPE11.
= 1
Deactivation of stiffness on nodes.
= 2
Deactivation of stiffness on elements.
= 3
Change node coordinates to avoid initial penetrations.
= 5
Gap is variable with time and initial gap is computed as:
ga p 0 = Gap P 0 with P 0 the initial penetration.
= 6
Gap is variable with time, but initial penetration is computed as (the node is slightly depenetrated):
ga p 0 = Gap P 0 5 % ( Gap P 0 )
= 1000 Default, if /DEFAULT/INTER/TYPE11 is not defined
No action.

(Integer)

VISs Critical damping coefficient on interface stiffness.

Default = 0.05 (Real)

VISF Critical damping coefficient on interface friction.

Default =1.0 (Real)

Bumult Sorting factor. 12 13

Default = 0.20 (Real)

fric_ID Friction identifier for friction definition for selected pairs of parts.
= 0 (Default)
Use friction parameters defined in this interface.
0
Use /FRICTION/fric_ID.

(Integer)

Kthe Heat exchange coefficient (if fct_IDK = 0). 15

Default = 0.0 (Real)

[ W m 2 K ]
Heat exchange scale factor (if fct_IDK ≠ 0). 15

Default = 1.0 (Real)

fct_IDK Heat exchange definition with contact pressure identifier.

Default = 0 (Integer)

AscaleK Abscissa scale factor on fct_IDK.

Default = 1.0 (Real)

[ Pa ]
Tint Interface temperature. 15

(Real)

[ K ]
Ithe_form Heat contact formulation flag.
= 0 (Default)
Exchange between constant temperature in the interface and shells (secondary side).
= 1
Heat exchange between pieces in contact.

(Integer)

Frad Radiation factor. 15

(Real)

[ W m 2 K 4 ]
Drad Maximum distance for radiation computation. 15

(Real)

[ m ]

Flags for Deactivation of Boundary Conditions: IBC

(1)-1 (1)-2 (1)-3 (1)-4 (1)-5 (1)-6 (1)-7 (1)-8
IBCX IBCY IBCZ

Definition

Field Contents SI Unit Example
IBCX Deactivation flag of X boundary condition at impact.
= 0
Free DOF
= 1
Fixed DOF

(Boolean)

IBCY Deactivation flag of Y boundary condition at impact.
= 0
Free DOF
= 1
Fixed DOF

(Boolean)

IBCZ Deactivation flag of Z boundary condition at impact.
= 0
Free DOF
= 1
Fixed DOF

(Boolean)

Comments

  1. A non-zero Gapmin value must be input in case of a line is a spring element.
  2. In case of SPMD, each main segment defined by line_IDm must be associated to an element (possibly to a void element).
  3. The secondary and main lines are defined using Lines option. A self-impacting contact is defined when line_IDs > 0 and line_IDm = 0.
  4. Flag Idel =1 has a CPU cost higher than Idel =2.
  5. A default value for Gapmin is computed as:
    Ga p min = g m _ min + g s _ min
    While,
    g m _ min = min ( t 2 , l 20 , S 2 )
    Main surface gap
    t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3758@
    Average thickness of the main elements for shell elements
    l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3758@
    Length of the smallest side of solid elements
    S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3758@
    Smallest cross section of the beam and truss elements
    g s _ min
    Secondary surface gap: computation identical to g m _ min ; except that it is applied on secondary side elements.
  6. Variable gap
    • If Igap = 1000, gap is constant and is equal to Gapmin.
    • If Igap = 1, gap is variable and is computed for each impact as:
      g m + g s
    • If Igap = 3, gap is variable and is computed for each impact as:
      max { G a p min , min [ ( g s + g m ) , % m e s h _ s i z e ( g s _ l + g m _ l ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yyaiaacIhadaGadaqaaiaadEeacaWGHbGaamiCamaaBaaaleaaciGG TbGaaiyAaiaac6gaaeqaaOGaaiilaiGac2gacaGGPbGaaiOBamaadm aabaWaaeWaaeaacaWGNbWaaSbaaSqaaiaadohaaeqaaOGaey4kaSIa am4zamaaBaaaleaacaWGTbaabeaaaOGaayjkaiaawMcaaiaacYcaca GGLaGaamyBaiaadwgacaWGZbGaamiAaiaac+facaWGZbGaamyAaiaa dQhacaWGLbGaeyyXIC9aaeWaaeaacaWGNbWaaSbaaSqaaiaadohaca GGFbGaamiBaaqabaGccqGHRaWkcaWGNbWaaSbaaSqaaiaad2gacaGG FbGaamiBaaqabaaakiaawIcacaGLPaaaaiaawUfacaGLDbaaaiaawU hacaGL9baaaaa@6376@
      Where,
      g m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3868@
      Main element gap
      g m = t 2
      With t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@3758@ thickness of the main element for shell elements
      g m = l 10
      With l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGSbaaaa@3750@ length of the smallest side of a solid element
      g m = S 2
      With S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3737@ being the cross section of the truss and beam elements
      g m = 0
      For spring elements
      g s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaaaa@386E@
      Is computed the same way; except that it is applied on secondary side elements
      g m _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gacaGGFbGaamiBaaqabaaaaa@3A3C@
      Length of the smaller edge of element
      g s _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gacaGGFbGaamiBaaqabaaaaa@3A3C@
      Length of the smaller edge of elements connected to the secondary node

      The variable gap is always at least equal to Gapmin.

  7. Contact stiffness

    There is no limitation value on the stiffness factor (but a value greater than 1.0 can reduce the initial time step). Contact stiffness for shell, solid and beam elements is computed as:

    If Istf =1:

    K = S t f a c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0Jaam4uaiaadshacaWGMbGaamyyaiaadogaaaa@3CBE@

    If Istf = 2, 3, 4 or 5:

    K = max [ S t min , min ( S t max , K n ) ]

    Where,
    • K n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGUbaabeaaaaa@37E5@ is computed from both main segment stiffness K m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGTbaabeaaaaa@37E4@ and secondary segment stiffness K s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGZbaabeaaaaa@37EA@ as follows, if Istf1:

      Istf = 2, K n = K m + K s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqa aiaad2gaaeqaaOGaey4kaSIaam4samaaBaaaleaacaWGZbaabeaaaO qaaiaaikdaaaaaaa@3F01@

      Istf = 3, K n = max ( K m , K s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaOGaeyypa0JaciyBaiaacggacaGG4bWaaeWa aeaacaWGlbWaaSbaaSqaaiaad2gaaeqaaOGaaiilaiaadUeadaWgaa WcbaGaam4CaaqabaaakiaawIcacaGLPaaaaaa@4260@

      Istf = 4, K n = min ( K m , K s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaOGaeyypa0JaciyBaiaacMgacaGGUbWaaeWa aeaacaWGlbWaaSbaaSqaaiaad2gaaeqaaOGaaiilaiaadUeadaWgaa WcbaGaam4CaaqabaaakiaawIcacaGLPaaaaaa@425E@

      Istf = 5, K n = K m K s K m + K s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaOGaeyypa0ZaaSaaaeaacaWGlbWaaSbaaSqa aiaad2gaaeqaaOGaeyyXICTaai4samaaBaaaleaacaGGZbaabeaaaO qaaiaadUeadaWgaaWcbaGaamyBaaqabaGccqGHRaWkcaWGlbWaaSba aSqaaiaadohaaeqaaaaaaaa@4479@

    • Where, K m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGTbaabeaaaaa@37E4@ is main segment stiffness and computed as:

      when main segment lies on a shell or is shared by shell and solid:

      K m = S t f a c 0.5 E t

      when main segment lies on a solid:

      K m = S t f a c B S 2 V

      Where,
      S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGtbaaaa@39AF@
      Segment area
      V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGtbaaaa@39AF@
      Volume of the solid
      B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGtbaaaa@39AF@
      Bulk modulus
    • K s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaadohaaeqaaaaa@3852@ is an equivalent nodal stiffness considered:

      when node is connected to a shell element:

      K s = 1 2 E t

      when node is connected to solid element:

      K s = B V 3

    When using /PROP/VOID and /MAT/VOID, material properties and thickness for the VOID material must be entered otherwise the contact stiffness of the void elements will be zero. This is especially important if VOID shell elements share elements with solid elements as the stiffness of the shell elements is used in the contact calculation.

    For spring elements not attached to any other elements, use Istf=1 and specify the contact stiffness using Stfac. Otherwise, no contact will be detected.

  8. Deactivation of boundary condition is applied to nodes of surface 1.
  9. Inacti = 3 may create initial energy if the node belongs to a spring element.
    Inacti = 6 is recommended instead of Inacti = 5, to avoid high frequency effects into the interface.
    Figure 1.


  10. The sorting factor Bumult is used to speed up the sorting algorithm.
  11. The default value for Bumult is automatically increased to 0.30 for models which have more than 1.5 million nodes and to 0.40 for models with more than 2.5 million of nodes.
  12. If the time step of a secondary node in this contact becomes less than dtmin, the secondary node is deleted from the contact and a warning message is printed in the output file. This dtmin value takes precedence over any model interface minimum time step entered in /DT/INTER/DEL.
  13. When sens_ID is defined for activation/deactivation of the interface, Tstart and Tstop are not taken into account.
  14. If fric_ID is defined, the contact friction is defined in /FRICTION and the friction input Fric in this input card is not used.

    For friction formulation:

    Friction penalty formulation Iform
    • If Iform = 1, (default) viscous formulation, the friction forces are:
      F t = min ( μ F n , F a d h )

      While an adhesion force is computed as:

      F a d h = C V t with C = V I S F 2 K m

    • If Iform = 2, stiffness formulation, the friction forces are:
      F t n e w = min ( μ F n , F a d h )

      While an adhesion force is computed as:

      F a d h = F t o l d + Δ F t with Δ F t = K V t d t

      Where, V t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaS baaSqaaiaadshaaeqaaaaa@385F@ is tangential velocity of the secondary node relative to the main segment.

      Iform = 2 is recommended for implicit and low speed impact explicit analysis.

  15. Heat exchange:
    By Ithe=1 (heat transfer activated) to consider heat exchange and heat friction in contact.
    • If Ithe = 0, then heat exchange is between shell and constant temperature contact Tint.
    • If Ithe_form = 1, then heat exchange is between all contact pieces.

    Tint is used only when Ithe_form=0. In this case. The temperature of main side assumed to be constant (equal to Tint). If Ithe_form=1 then Tint is not taken into account. So, the nodal temperature of main side will be considered.

    If Ithe > 1, the material of the secondary side needs to be a thermal material using finite element formulation for heat transfer (/HEAT/MAT).

    Heat exchange coefficient:
    • If fct_IDK = 0, then Kthe is heat exchange coefficient, and the heat exchange depends only on heat exchange surface.
    • If fct_IDK0, Kthe is a scale factor, and the heat exchange depends on contact pressure:

    K = K t h e f K ( A s c a l e K , P )

    While, f K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOzamaaBa aaleaacaWGlbaabeaaaaa@37E1@ is the function of fct_IDK.

  16. Thermal conduction is computed when the secondary node falls into the Gap.
  17. Radiation is considered in contact if F r a d 0 and the distance, d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaaaa@36DC@ , of the secondary node to the main segment is:
    G a p < d < D r a d
    While D r a d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaadkhacaWGHbGaamizaaqabaaaaa@3A1A@ is the maximum distance for radiation computation. The default value for D r a d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaadkhacaWGHbGaamizaaqabaaaaa@3A1A@ is computed as the maximum of:
    • Upper value of the Gap (at time 0) among all nodes
    • Smallest side length of secondary element

    It is not recommended to set the value too high for D r a d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaS baaSqaaiaadkhacaWGHbGaamizaaqabaaaaa@3A1A@ , which may reduce the performance of Radioss Engine. The heat exchange is computed only from main to secondary.

    A radiant heat transfer conductance is computed as:

    h r a d = F r a d ( T m 2 + T s 2 ) ( T m + T s )

    with

    F r a d = σ 1 ε 1 + 1 ε 2 1

    Where,
    σ = 5.669 × 10 8 [ W m 2 K 4 ]
    Stefan Boltzman constant
    ε 1
    Emissivity of secondary surface
    ε 2
    Emissivity of main surface
  18. If the element size is less than the contact gap and there are self-impact contacts, no physical contact with neighboring secondary lines can occur. In case of self-contact, using Irem_gap=2, contact with the neighboring secondary line segments will be removed.
    For each main line, element connectivity is used to determine neighboring lines. Then secondary lines for which curvilinear distance of at least one node is less than 2 G a p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaGcaaqaai aaikdaaSqabaGccqGHflY1caWGhbGaamyyaiaadchaaaa@3C30@ (in initial configuration) are removed from the contact with this main line. The real distance between main and secondary lines is also checked to verify that all neighboring lines are removed.
    Figure 2. Secondary lines removed from edge to edge contact