/INTER/TYPE14

Block Format Keyword This interface simulates impacts between a hyper-ellipsoidal rigid main surface and a list of secondary nodes. The hyper-ellipsoidal surface is treated as an analytical surface (hyper-ellipsoidal surfaces are only discretized for post-processing).

For this interface, generally, use a mesh whose size is finer than the lowest semi- axis of main surface. The main surface must be a MADYMO hyper-ellipsoidal surface or a Radioss hyper-ellipsoidal surface.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/INTER/TYPE14/inter_ID/unit_ID
inter_title
grnd_IDs surf_IDm fct_IDld fct_IDf fct_IDd1 fct_IDd2
Stif Fric Visc Gap

Definition

Field Contents SI Unit Example
inter_ID Interface identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

inter_title Interface title.

(Character, maximum 100 characters)

grnd_IDs Secondary nodes group identifier.

(Integer)

surf_IDm Main surface identifier.

(Integer)

fct_IDld Elastic force versus penetration function identifier.

(Integer)

fct_IDf Friction coefficient versus elastic force function identifier.

Default = 1 (Integer)

fct_IDd1 Damping coefficient versus normal velocity function identifier.

Default = 1 (Integer)

fct_IDd2 Damping coefficient versus elastic force function identifier.

Default = 1 (Integer)

Stif Interface stiffness.

No default (Real)

[ N m ]
Fric Friction coefficient.

No default (Real)

Visc Normal viscosity coefficient.

No default (Real)

[ kg s ]
Gap Gap for impact activation.

No default (Real)

[ m ]

Comments

  1. Elastic force is defined as:
    F e total = F e local = Stif f l d ( Penetratio n max )

    While,

    F e total = Stif Penetration , if fct_IDld is 0

    F e total = Stif f l d ( Penetratio n max ) Penetration P e n e t r a t i o n s , otherwise f l d is function of fct_IDld

  2. Tangential force is defined as:
    F t Fric f f ( F e local ) F e local

    With f f is function of fct_IDf

  3. Damping force is defined as:
    F d = C V n

    With, V being the normal velocity of the secondary node:

    C = V i s c f d 1 ( V n ) f d 2 ( F e l o c a l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbGaey ypa0JaamOvaiaadMgacaWGZbGaam4yaiabgwSixlGacAgadaWgaaWc baGaamizaiaaigdaaeqaaOWaaeWaaeaacaWGwbWaaSbaaSqaaiaad6 gaaeqaaaGccaGLOaGaayzkaaGaeyyXICTaciOzamaaBaaaleaacaWG KbGaaGOmaaqabaGcdaqadaqaaiaadAeadaWgaaWcbaGaamyzaaqaba GcdaahaaWcbeqaaiaadYgacaWGVbGaam4yaiaadggacaWGSbaaaaGc caGLOaGaayzkaaaaaa@51D2@

    f d 1 and f d 2 are functions of fct_IDd1 and fct_IDd2.