/INTER/TYPE25

Block Format Keyword TYPE25 is a general nodes to surface contact interface using the penalty method. The penalty stiffness is constant and therefore the time step is not affected.

Solid elements have zero contact gap thickness. Contact inputs can be defined as a single surface, surface to surface, or nodes to surface.

This contact interface can replace interface TYPE3, TYPE5, TYPE7, TYPE19 or TYPE24.

This interface is not available with the implicit solution.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/INTER/TYPE25/inter_ID/unit_ID
inter_title
surf_ID1 surf_ID2 Istf Ithe Igap Irem_i2 Idel Iedge Ipstif
grnd_IDs Gap_scale %mesh_size Gap_max_s Gap_max_m
Stmin Stmax Igap0 Ishape Edge_angle Stfacm
Stfac Fric Tpressfit Tstart Tstop
IBC IVIS2 Inacti VISs
Ifric Ifiltr Xfreq sens_ID Dtstif fric_ID
Read this input only if Ifric > 0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
C1 C2 C3 C4 C5
Read this input only if Ifric > 1
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
C6
Read this input only if IVIS2 = -1
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ViscFluid SigMaxAdh ViscAdhFact
Read this input only if Ithe > 0
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Kthe fct_IDK Tint Ithe_form AscaleK
Frad Drad Fheats Fheatm fct_IDF
fct_IDc Dcond

Definition

Field Contents SI Unit Example
inter_ID Interface identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

inter_title Interface title.

(Character, maximum 100 characters)

surf_ID1 First surface identifier. 1

(Integer)

surf_ID2 Second surface identifier.

(Integer)

Istf Interface stiffness definition flag. 2
=0
Set to the value defined in /DEFAULT/INTER/TYPE25.
=2
Interface stiffness is the average of the main and secondary stiffness.
=3
Interface stiffness is the maximum of the main and secondary stiffness.
=4
Interface stiffness is the minimum of the main and secondary stiffness.
=5
Interface stiffness is the main and secondary stiffness in series.
=7
Interface stiffness is only based on stability condition. 15
=1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
Interface stiffness is only based on the main side stiffness.

(Integer)

Ithe Heat transfer flag.
= 0
No heat transfer
= 1
Heat transfer is activated

Thermal exchange is not available for edge to edge.

(Integer)

Igap Gap/element option flag. 3
=0
Use value defined in /DEFAULT/INTER/TYPE25.
=1 Default, if /DEFAULT/INTER/TYPE25 is not defined
Variable gap varies according to the characteristics of the impacted main surface and the impacting secondary node.
=2
Variable gap (similar to Igap=1) and deactivating secondary nodes if element size < gap value, in case of self-impact contact.
=3
Variable gap where the size of the mesh (defined in %mesh_size) is considered to avoid initial penetrations in self-contact.
Irem_i2 Deactivating flag for the secondary node, if the same contact pair (nodes) has been defined in interface TYPE2.
=0
Use the value defined in /DEFAULT/INTER/TYPE25.
=1 Default, if /DEFAULT/INTER/TYPE25 is not defined
Secondary nodes in /INTER/TYPE2 tied contacts are removed from this contact.
=3
No change to secondary nodes.
Idel Node and segment deletion flag.
=0
Use the value defined in /DEFAULT/INTER/TYPE25.
=1
When all the elements (4-node shells, 3-node shells, solids) associated to one segment are deleted, the segment is removed from the main side of the interface. It is also removed in case of explicit deletion using Radioss Engine keyword /DEL in the Engine file.
Additionally, non-connected nodes are removed from the secondary side of the interface.
=2
When a 4-node shell, a 3-node shell or a solid element is deleted, the corresponding segment is removed from the main side of the interface. It is also removed in case of explicit deletion using Radioss Engine keyword /DEL in the Engine file.
Additionally, non-connected nodes are removed from the secondary side of the interface.
=1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
No deletion.
Iedge Edge contact options. Contact occurs between main and secondary edges which are automatically extracted from surf_ID1 and surf_ID2. Sharp edges for external solid faces are defined using the angle Edge_angle.
= 0
Set to the value defined in /DEFAULT/INTER/TYPE25
= 1
The secondary and the main edges are the external border edges of shell segments. There is no edge contact for solid elements.
= 11
The secondary edges are the sharp edges of the external solid segments and external border edges of shell segments. The main edges are all edges from external solid segments and external border edges of shell segments.
= 13
The secondary edges are the sharp edges of the external solid segments and external border edges of shell segments. The main edges are all edges from external solid segments and all shell segments.
= 22
The secondary and main edges are all edges from external solid segments and all edges from shell segments.
= 1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
No edge to edge contact.

(Integer)

Ipstif Add contact stiffness flag based on stability condition: 15
= 0 (Default)
No additional stiffness based on stability condition.
= 1 (Default when using Istf=7)
Additional stiffness based on stability condition is used with the masses coming from the mesh (density, element size) only.
= 2
Additional stiffness based on stability condition is used with the initial masses (density, element size, added mass, mass scaling).

(Integer)

grnd_IDs Nodes group identifier. 1

If defined, node group will be added as secondary nodes.

(Integer)

Gap_scale Gap scale factor for all Igap options.

Default = 1.0 (Real)

%mesh_size Percentage of mesh size (used only when Igap = 3).

Default = 0.4 (Real)

Gap_max_s Secondary maximum gaps. 3

Default = 1030 (Real)

[ m ]
Gap_max_m Main maximum gaps. 3

Default = 1030 (Real)

[ m ]
Stmin Minimum stiffness (used only when Istf > 1 and Istf < 7). 2

(Real)

[ N m ]
Stmax Maximum stiffness (used only when Istf > 1 and Istf < 7). 2

Default = 1030 (Real)

[ N m ]
Igap0 Gap modification flag for secondary shell nodes on the free edges or shell elements. 3
=0
Set to the value defined in /DEFAULT/INTER/TYPE25.
=1
Set gap to zero for the secondary shell nodes that are on a free edge. For shell edge contact, the free edges are shifted so that the edge does not extend out of the shell segment.
=1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
No change.

(Integer)

Ishape Flag defining the shape of the gap along the surface(s) external border in the node to surface contact.
=0
Set to the value defined in /DEFAULT/INTER/TYPE25.
=1 Default, if /DEFAULT/INTER/TYPE25 is not defined
Square gap.
=2
Round gap.

(Integer)

Edge_angle Edge angle.

Only used with Iedge =11,13. Sharp edges are included in edge contact, if the angle between two segments which share the same edge is smaller than Edge_angle value.

Default = 135° (Real)
[ deg ]
Stfacm Scale factor for stiffness based on stability condition (Ipstif > 0 or Istf =7). 15

Default = 0.1 (Real)

Stfac Interface stiffness scale factor. 2

Default = 1.0 (Real)

Fric Coulomb friction (if fct_IDF= 0).

Coulomb friction scale factor (if fct_IDF≠ 0).

Default = 0.0 (Real)

Tpressfit Time duration to apply contact forces, due to initial penetrations (press-fit). Used only with Inacti= -1 explicit solution only. 9

Default = time corresponding to 10000 cycles (Real)

[ s ]
Tstart Start time. 10

(Real)

[ s ]
Tstop Temporary deactivation time. 10

Default = 1030 (Real)

[ s ]
IBC Deactivation flag of boundary conditions at impact.

(Boolean)

Inacti Initial penetration flag.
=-1
All initial penetrations are taken into account.
=0
Set to the value defined in /DEFAULT/INTER/TYPE25.
=5
The main segment is shifted by the initial penetration value P 0 .
If P P 0 , then P ' = P P 0 , where P 0 is the initial penetration.
=1000 Default, if /DEFAULT/INTER/TYPE25 is not defined
Only tiny initial penetrations will be taken into account.

(Integer)

VISs Critical damping coefficient on interface stiffness.

Default = 0.05 (Real)

Ifric Friction formulation flag.
Only used if fric_ID is not defined.
= 0 (Default)
Static Coulomb friction law
= 1
Generalized viscous friction law
= 2
(Modified) Darmstad friction law
= 3
Renard friction law
= 4
Exponential decay friction law.

For edge to edge contact, only static Coulomb friction law is available.

(Integer)

Ifiltr Friction filtering flag. 8
= 0 (Default)
No filter is used.
= 1
Simple numerical filter.
= 2
Standard -3dB filter with filtering period.
= 3
Standard -3dB filter with cutting frequency.

(Integer)

Xfreq Filtering coefficient.

Default = 1.0 (Real)

sens_ID Sensor identifier to activate/deactivate the interface.

(Integer)

Dtstif Time step used for contact stiffness based on stability condition.

(Ipstif > 0 or Istf = 7). 15

Default = 0 (Real)

[ s ]
fric_ID Friction identifier for friction definition for selected pairs of parts.
= 0 (Default)
Use friction parameters defined in this interface
0
Use /FRICTION/fric_ID

For edge to edge contact, only isotropic friction is considered. If the corresponding model is orthotropic, only coefficient in direction 1 of contacted part is taken into account for edge to edge contact.

(Integer)

C1 - C6 Friction law coefficient. 5

(Real)

See Table 1
IVIS2 Interface adhesion flag. 12
=0 (Default)
No adhesion interface forces.
=-1
Enable transverse adhesion and tangential viscous force.

(Integer)

ViscFluid Viscosity of the fluid at the interface. 12

(Real)

[ Pas ]
SigMaxAdh Maximum transverse adhesive stress at interface. 12

(Real)

[ Pa ]
ViscAdhFact Tangential viscous resistant force scaling factor. 12

(Real)

Kthe Conductive heat exchange coefficient (if fct_IDK = 0). 14

Default = 0.0 (Real)

[ W m 2 K ]
Heat exchange scale factor (if fct_IDK ≠ 0)

Default = 0.0 (Real)

fct_IDK Function identifier for heat exchange definition with contact pressure.

Default = 0 (Integer)

AscaleK Abscissa scale factor on fct_IDK.

Default = 1.0 (Real)

[ Pa ]
Tint Interface temperature. 14

(Real)

[ K ]
Ithe_form Heat contact formulation flag. 14
= 0
Exchange only between interface (constant temperature) and shells (secondary side).
= 1
Heat exchange between all pieces in contact.

(Integer)

Frad Radiation factor. 13

(Real)

[ W m 2 K 4 ]
Drad Maximum distance for radiation computation.

(Real)

[ m ]
fct_IDc Function identifier for the conductive heat exchange coefficient definition as a function of distance. 14

Default = 0 (Integer)

Dcond Maximum distance for conductive heat exchange.

Default = 0.0 (Real)

[ m ]
Fheats Frictional heating factor of secondary.

(Real)

Fheatm Frictional heating factor of main.

(Real)

fct_IDF Friction coefficient with temperature function identifier.

Default = 0 (Integer)

Flags for Deactivation of Boundary Conditions: IBC

(1)-1 (1)-2 (1)-3 (1)-4 (1)-5 (1)-6 (1)-7 (1)-8 (1)-9 (1)-10
IBCX IBCY IBCZ

Definition

Field Contents SI Unit Example
IBCX Deactivation flag of X boundary condition at impact.
=0
Free DOF
=1
Fixed DOF

(Boolean)

IBCY Deactivation flag of Y boundary condition at impact.
=0
Free DOF
=1
Fixed DOF

(Boolean)

IBCZ Deactivation flag of Z boundary condition at impact.
=0
Free DOF
=1
Fixed DOF

(Boolean)

Comments

  1. Contact main/secondary pairs can be defined in three ways:
    • Single self-impacting surface only: surf_ID1 > 0, and surf_ID2 = 0
    • Symmetric surface to surface: surf_ID1 > 0, and surf_ID2 > 0
    • Nodes to surface: grnd_IDs > 0, surf_ID1 = 0, and surf_ID2 > 0

    grnd_IDs > 0 is used to define node to surface contact type, but it may also be used in other contact types. In that case, the node group will be added simply as supplementary secondary nodes, which is useful when you want to add spring element nodes, main node of rigid body, and so on into the contact (as secondary nodes).

    If the surface is defined with shells, two contact segments (shifted by half thickness (t)) with opposite normal directions will be generated:
    Figure 1.

    inter_type24

    In case of SPMD, each main segment defined by surf_IDi (i=1, 2) must be associated to an element (possibly to a void element).

    In cases where quadratic elements are used, it is recommended to define the surfaces by using /SURF/PART/EXT as in that case, middle nodes of quadratic elements are used in the contact treatment.

    The surface definition /SURF/PART/ALL is not available with TYPE25.

  2. Contact stiffness, K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWGlbaaaa@39A7@ is computed as:
    K = max [ S t min , min ( S t max , K n ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0JaciyBaiaacggacaGG4bWaamWaaeaacaWGtbGaamiDamaaBaaa leaaciGGTbGaaiyAaiaac6gaaeqaaOGaaiilaiGac2gacaGGPbGaai OBamaabmaabaGaam4uaiaadshadaWgaaWcbaGaciyBaiaacggacaGG 4baabeaakiaacYcacaWGlbWaaSbaaSqaaiaad6gaaeqaaaGccaGLOa GaayzkaaaacaGLBbGaayzxaaaaaa@4E62@
    Where, K n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaaaa@384D@ depends on Istf:
    • Istf = 1000, K n = K m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaOGaeyypa0Jaam4samaaBaaaleaacaWGTbaa beaaaaa@3B4B@
    • Istf = 2, K n = K m + K s 2
    • Istf = 3, K n = max ( K m , K s )
    • Istf = 4, K n = min ( K m , K s )
    • Istf = 5, K n = K m K s K m + K s
    • Istf = 7, K n = K m s d t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaOGaeyypa0Jaam4samaaBaaaleaacaWGTbGa am4CaiaadsgacaWG0baabeaaaaa@3E22@ . See.
    K m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad2gaaeqaaaaa@384D@ : main segment stiffness and computed as:
    • K m = Stfac 0.5 E t , when the main segment lies on a shell.
    • K m = Stfac B S 2 V , when main segment lies on a solid.
    • K m = max ( Stfac 0.5 E t , Stfac B S 2 V ) , when main segment is shared by shell and solid.
    K s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad2gaaeqaaaaa@384D@ : Secondary node stiffness is an equivalent nodal stiffness considered for interface TYPE25, and computed as:
    • K m = Stfac 0.5 E t , when node is connected to a shell element,
    • K s = S t f a c B V 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaadohaaeqaaOGaeyypa0Jaam4uaiaadshacaWGMbGaamyy aiaadogacqGHflY1caWGcbGaeyyXIC9aaOqaaeaacaWGwbaaleaaca aIZaaaaaaa@44FA@ , when node is connected to solid element.
    Where,
    S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3736@
    Segment area
    V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3736@
    Volume of the solid
    B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3736@
    Bulk modulus
    t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbaaaa@3736@
    Thickness of the shell

    The Stfac value can be larger than 1.0. There is no limitation value to the stiffness factor (a value larger than 1.0 can reduce the initial time step).

    When using /PROP/VOID and /MAT/VOID, material properties and thickness for the VOID material must be entered; otherwise, the contact stiffness of the void elements will be zero. This is especially important if VOID shell elements share elements with solid elements as the stiffness of the shell elements is used in the contact calculation.

  3. The gap is computed automatically for each impact as:
    • If Igap = 1, variable gap is computed as:
      min ( g s , G a p _ max _ s ) + min ( g m , G a p _ max _ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yAaiaac6gacaGGOaGaam4zamaaBaaaleaacaWGZbaabeaakiaacYca caWGhbGaamyyaiaadchacaGGFbGaciyBaiaacggacaGG4bGaai4xai aadohacaGGPaGaey4kaSIaciyBaiaacMgacaGGUbGaaiikaiaadEga daWgaaWcbaGaamyBaaqabaGccaGGSaGaam4raiaadggacaWGWbGaai 4xaiGac2gacaGGHbGaaiiEaiaac+facaWGTbGaaiykaaaa@5590@
    • If Igap=2, variable gap is computed as:
      min ( g s , G a p _ max _ s ) + min ( g m , G a p _ max _ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yAaiaac6gacaGGOaGaam4zamaaBaaaleaacaWGZbaabeaakiaacYca caWGhbGaamyyaiaadchacaGGFbGaciyBaiaacggacaGG4bGaai4xai aadohacaGGPaGaey4kaSIaciyBaiaacMgacaGGUbGaaiikaiaadEga daWgaaWcbaGaamyBaaqabaGccaGGSaGaam4raiaadggacaWGWbGaai 4xaiGac2gacaGGHbGaaiiEaiaac+facaWGTbGaaiykaaaa@5699@
      with deactivation of secondary nodes when the element size is smaller than gap values:
      Figure 2.

      inter_type7_master_seg

      For self-impact contact, when Curvilinear Distance (from a node of the main segment to a secondary node) is smaller than 2 G a p (in initial configuration), this secondary node will not be taken into account by this main segment, and it will not be deleted from the contact for the other main segments.

    • If Igap= 3, variable gap is computed as:
      min [ min ( g s , G a p _ max _ s ) + min ( g m , G a p _ max _ m ) , % m e s h _ s i z e ( g s _ l + g m _ l ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yAaiaac6gadaWadaqaaiGac2gacaGGPbGaaiOBaiaacIcacaWGNbWa aSbaaSqaaiaadohaaeqaaOGaaiilaiaadEeacaWGHbGaamiCaiaac+ faciGGTbGaaiyyaiaacIhacaGGFbGaam4CaiaacMcacqGHRaWkciGG TbGaaiyAaiaac6gacaGGOaGaam4zamaaBaaaleaacaWGTbaabeaaki aacYcacaWGhbGaamyyaiaadchacaGGFbGaciyBaiaacggacaGG4bGa ai4xaiaad2gacaGGPaGaaiilaiaacwcacaWGTbGaamyzaiaadohaca WGObGaai4xaiaadohacaWGPbGaamOEaiaadwgacqGHflY1daqadaqa aiaadEgadaWgaaWcbaGaam4Caiaac+facaWGSbaabeaakiabgUcaRi aadEgadaWgaaWcbaGaamyBaiaac+facaWGSbaabeaaaOGaayjkaiaa wMcaaaGaay5waiaaw2faaaaa@70AB@
      Where,
      • g m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3869@ : main element gap:

        g m = G a p _ s c a l e * t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaOGaeyypa0Jaam4raiaadggacaWGWbGaai4x aiaadohacaWGJbGaamyyaiaadYgacaWGLbGaaiOkamaalaaabaGaam iDaaqaaiaaikdaaaaaaa@4417@ , with t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39D0@ is the thickness of the main element for shell elements

        g m = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaOGaeyypa0JaaGimaaaa@3A39@ , for brick elements

      • g s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3869@ : secondary node gap:

        g s = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaOGaeyypa0JaaGimaaaa@3A39@ , if the secondary node is not connected to any element or is only connected to brick or spring elements.

        g s = G a p _ s c a l e * t 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaOGaeyypa0Jaam4raiaadggacaWGWbGaai4x aiaadohacaWGJbGaamyyaiaadYgacaWGLbGaaiOkamaalaaabaGaam iDaaqaaiaaikdaaaaaaa@441D@ , if the secondary node is connected to a shell element, with t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39D0@ being the largest thickness of the shell elements connected to the secondary node.

        g s = G a p _ s c a l e * S 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaOGaeyypa0Jaam4raiaadggacaWGWbGaai4x aiaadohacaWGJbGaamyyaiaadYgacaWGLbGaaiOkamaalaaabaWaaO aaaeaacaWGtbaaleqaaaGcbaGaaGOmaaaaaaa@4421@ , if the secondary node is connected to truss or beam elements, with S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaacaGacmGadaWaaiqacaabaiaafaaake aacaWG0baaaa@39D0@ being the cross section of the 1D element.

        If the gap modification flag for secondary shell nodes on the free edges Igap0 is set to 1: g s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaadohaaeqaaaaa@386F@ is reset to zero if the secondary node lies on the free edges of the secondary surface. The gap modification flag for secondary shell nodes on the free edges has no effect if the secondary node is defined through the optional node group (grnod_IDs).

        If the secondary node is connected to multiple shells and/or beams or trusses, the largest computed secondary gap is used.

    • g m _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaad2 gacaGGFbGaamiBaaaa@39A8@ : length of the smallest edge of the main segment.
    • g s _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaad2 gacaGGFbGaamiBaaaa@39A8@ : if the secondary node belongs to the main surface, g s _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaad2 gacaGGFbGaamiBaaaa@39A8@ is the length of the smallest edge of main segments connected to the secondary node, g s _ l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaad2 gacaGGFbGaamiBaaaa@39A8@ =1E+30, otherwise.

      In any case, g m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3869@ and g s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbWaaS baaSqaaiaad2gaaeqaaaaa@3869@ are limited separately by Gap_max_m and Gap_max_s before the gap is computed.

      If the secondary node does not belong to the main surface, the gap remains

      min ( g s , G a p _ max _ s ) + min ( g m , G a p _ max _ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGTbGaai yAaiaac6gacaGGOaGaam4zamaaBaaaleaacaWGZbaabeaakiaacYca caWGhbGaamyyaiaadchacaGGFbGaciyBaiaacggacaGG4bGaai4xai aadohacaGGPaGaey4kaSIaciyBaiaacMgacaGGUbGaaiikaiaadEga daWgaaWcbaGaamyBaaqabaGccaGGSaGaam4raiaadggacaWGWbGaai 4xaiGac2gacaGGHbGaaiiEaiaac+facaWGTbGaaiykaaaa@5590@

  4. For node to surface contact, the gap never extends more than the secondary node gap out of the surface external border. Ishape determines if the shape of this gap is square or round and the contact force (normal) direction. Ishape has no effect on the gap and its shape for edge to edge contact.
    Depending on Ishape the gap used for contact at the main surface external border and resulting force direction.
    Figure 3. Ishape=1 (Square Gap)


    Figure 4. Ishape=2 (Round Gap)


    Ishape =1 is not available with Igap =3 and will then be reset to Ishape =2.

  5. For shell element edge to edge contact, the gap is round. The main side contact gap on the free edge is shifted so that the edge does not extend out of the shell segment.
    Figure 5. Edge contact main side


    The secondary side contact gap on the free edge behavior depends on the value of Igap0, as shown below.
    Figure 6. Edge contact secondary side


  6. For solid elements when Iedge=11 and Iedge=13, the secondary side consists of only the sharp edges with angle smaller than Edge_angle. For Iedge=22, all edges from solid elements are considered on secondary side. On the main side, all edges from solid elements are included for all 3 Iedge cases.
    Figure 7. Secondary side edges for Iedge=11 and Iedge=13


  7. If fric_ID is defined, the contact friction is defined in /FRICTION and the friction inputs (Ifric, C1, and so on) in this input card are not used.

    The friction forces are:

    F t n e w = min ( μ F n , F a d h )

    While an adhesion force is computed as:

    F a d h = F t o l d + Δ F t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbWaaS baaSqaaiaadggacaWGKbGaamiAaaqabaGccqGH9aqpcaWGgbWaa0ba aSqaaiaadshaaeaacaWGVbGaamiBaiaadsgaaaGccqGHRaWkcqqHuo arcaWGgbWaaSbaaSqaaiaadshaaeqaaaaa@4423@ with Δ F t = K V t d t

    Where, μ is the Coulomb friction coefficient and is defined as:
    • For flag Ifric by default:

      μ = F r i c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaWGgbGaamOCaiaadMgacaWGJbaaaa@3CB3@ with F T μ F N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubaabeaakiabgsMiJkabeY7aTjabgwSixlaadAeadaWg aaWcbaGaamOtaaqabaaaaa@3F50@ (Coulomb friction)

    • For flag Ifric > 1, new friction models are introduced. In this case, the friction coefficient is set by a function:

      μ = μ ( p , V ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey ypa0JaeqiVd02aaeWaaeaacaWGWbGaaiilaiaadAfaaiaawIcacaGL Paaaaaa@3E51@

      Where,
      p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36CB@
      Pressure of the normal force on the main segment
      V
      Tangential velocity of the secondary node relative to the main segment

    Currently, the coefficients C1 through C6 are used to define a variable friction coefficient μ for new friction formulations.

    The following formulations are available:
    • Ifric = 1 (Generalized Viscous Friction law):
      μ = Fric + C 1 p + C 2 V + C 3 p V + C 4 p 2 + C 5 V 2
    • Ifric = 2 (Modified Darmstad law):
      μ = F r i c + C 1 e ( C 2 V ) p 2 + C 3 e ( C 4 V ) p + C 5 e ( C 6 V )
    • Ifric = 3 (Renard law):

      μ = C 1 + ( C 3 C 1 ) V C 5 ( 2 V C 5 ) if V [ 0 , C 5 ]

      μ = C 3 ( ( C 3 C 4 ) ( V C 5 C 6 C 5 ) 2 ( 3 2 V C 5 C 6 C 5 ) ) if V [ C 5 , C 6 ]

      μ = C 2 1 1 C 2 C 4 + ( V C 6 ) 2 if V C 6

      Where,
      • C 1 = μ s , static coefficient of friction, must be μ min < μ s < μ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaciyBaiaacMgacaGGUbaabeaakiabgYda8iabeY7aTnaa BaaaleaacaWGZbaabeaakiabgYda8iabeY7aTnaaBaaaleaaciGGTb GaaiyyaiaacIhaaeqaaaaa@44BF@
      • C 2 = μ d , dynamic coefficient of friction, must be μ min < μ d < μ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaciyBaiaacMgacaGGUbaabeaakiabgYda8iabeY7aTnaa BaaaleaacaWGKbaabeaakiabgYda8iabeY7aTnaaBaaaleaaciGGTb GaaiyyaiaacIhaaeqaaaaa@44B0@
      • C 3 = μ max , maximum coefficient of friction
      • C 4 = μ min , minimum coefficient of friction
      • C 5 = V c r 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaS baaSqaaiaaiwdaaeqaaOGaeyypa0JaamOvamaaBaaaleaacaWGJbGa amOCaiaaigdaaeqaaOaeaaaaaaaaa8qacqGHGjsUcaaIWaaaaa@3F6E@ , first critical velocity, must be > 0
      • C 6 = V c r 2 , second critical velocity, must be > V c r 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGH+aGpca WGwbWaaSbaaSqaaiaadogacaWGYbGaaGymaaqabaaaaa@3B08@
      • First critical velocity V c r 1 = C 5 must be less than the second critical velocity V c r 2 = C 6 ( C 5 < C 6 ) .
      • The static friction coefficient C 1 and the dynamic friction coefficient C 2 , must be less than the maximum friction C 3 ( C 1 C 3 and C 2 C 3 ).
      • The minimum friction coefficient C 4 must be less than the static friction coefficient C 1 and the dynamic friction coefficient C 2 ( C 4 C 1 and C 4 C 2 ).
    • Ifric = 4 (Exponential decay friction law)

      The frictional coefficient is assumed to be dependent on the relative velocity V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaaaa@36D1@ of the surfaces in contact according to:

      μ = C 1 + F r i c C 1 e C 2 V MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcq GH9aqpcaWGdbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaeWaaeaa caWGgbGaamOCaiaadMgacaWGJbGaeyOeI0Iaam4qamaaBaaaleaaca aIXaaabeaaaOGaayjkaiaawMcaaiabgwSixlaadwgadaahaaWcbeqa amaabmaabaGaeyOeI0Iaam4qamaaBaaameaacaaIYaaabeaalmaaem aabaGaamOvaaGaay5bSlaawIa7aaGaayjkaiaawMcaaaaaaaa@4F0A@

    Table 1. Units for Friction Formulations
    Ifric Fric C1 C2 C3 C4 C5 C6
    1 [ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ s Pa m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4CaaqaaiaabcfacaqGHbGaeyyXICTaaeyBaaaaaiaa wUfacaGLDbaaaaa@3E47@ [ 1 Pa 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaabcfacaqGHbWaaWbaaSqabeaacaaIYaaa aaaaaOGaay5waiaaw2faaaaa@3BC6@ [ s 2 m 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4CamaaCaaaleqabaGaaGOmaaaaaOqaaiaab2gadaah aaWcbeqaaiaaikdaaaaaaaGccaGLBbGaayzxaaaaaa@3C2C@
    2 [ 1 Pa 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaabcfacaqGHbWaaWbaaSqabeaacaaIYaaa aaaaaOGaay5waiaaw2faaaaa@3BC6@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ 1 P a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaaGymaaqaaiaaccfacaGGHbaaaaGaay5waiaaw2faaaaa @3AD5@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@ [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@
    3 [ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@ [ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@
    4 [ s m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaam aalaaabaGaae4Caaqaaiaab2gaaaaacaGLBbGaayzxaaaaaa@3A46@
  8. Friction filtering

    If Ifiltr = 1, 2 or 3, the tangential forces are smoothed using a filter:

    F T f = α F T ( t ) + 1 α F T f ( t d t ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOramaaBa aaleaacaWGubGaamOzaaqabaGccqGH9aqpcqaHXoqycaWHgbWaaSba aSqaaiaadsfaaeqaaOGaaiikaiaadshacaGGPaGaey4kaSYaaeWaae aacaaIXaGaeyOeI0IaeqySdegacaGLOaGaayzkaaGaaCOramaaBaaa leaacaWGubGaamOzaaqabaGccaGGOaGaamiDaiabgkHiTiaadsgaca WG0bGaaiykaaaa@4D2D@

    Where,
    F T f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOramaaBa aaleaacaWGubGaamOzaaqabaaaaa@38B2@
    Filtered tangential force
    F T ( t ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOramaaBa aaleaacaWGubaabeaakiaacIcacaWG0bGaaiykaaaa@3A23@
    Calculated tangential force at time t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@ before filtering
    F T f ( t d t ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOramaaBa aaleaacaWGubGaamOzaaqabaGccaGGOaGaamiDaiabgkHiTiaadsga caWG0bGaaiykaaaa@3DDD@
    Filtered tangential force at the previous time step
    t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@
    Current simulation time
    d t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaads haaaa@37D5@
    Current simulation time step
    α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3793@
    Filtering coefficient
    Where, α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3793@ coefficient is calculated from, if:
    • Ifiltr =1 α = X f r e q , simple numerical filter with a value between 0 and 1.
    • Ifiltr =2 α = 2 π X f r e q , standard -3dB filter, with the number of time steps to filter defined as X f r e q = d t T , and T = filtering period
    • Ifiltr =3 α = 2 π X f r e q d t standard -3dB filter, with Xfreq = cutting frequency
  9. Inacti and Ipen_max, initial penetration treatment:
    • Inacti = 1000: The initial penetrations are ignored: no contact forces are applied, but the nodes are not deactivated from the contact; if the node goes out of the contact and later gets back into contact, contact forces are then applied.
      Figure 8.

      inter_type24_inacti=1000
    • Inacti = -1: Initial forces are applied on all penetrating nodes. High initial penetrations should be avoided, as they might generate high contact forces and lead to high energy error at the beginning of the computation. The contact forces caused by the initial penetration are increased from zero at the contact activation time defined by Tstart or sens_ID to a maximum value over time Tpressfit after contact activation. The ramping of the contact forces caused by initial penetration allows for press fit situations in models to be simulated. To avoid dynamic effects, Tpressfit should not be too small. By default Tpressfit is the time corresponding to 10000 cycles.

      Stiffness is determined automatically with Inacti= -1, Istf, Stmin, and Stmax have no effect, only Stfac can be used for stiffness scaling.

    • Inacti = 5: The main segment is shifted by the initial penetration value ( P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIWaaabeaaaaa@37B2@ ); therefore, at time zero no initial forces are applied.

    The main segment position is restored only in case of rebound larger than P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaaIWaaabeaaaaa@37B2@ .

    In the opposite case, when secondary node continues to penetrate, the penetration is computed as:
    P ' = P P 0
    Figure 9.

    inter_type24_inacti=5
    • Intersections and large initial penetration (Inacti= -1 and 5):

      Shells: initial intersections should be avoided, as they will lead to wrong direction of contact force and possible secondary nodes anchorage.

  10. When sens_ID is defined for activation/deactivation of the interface, Tstart and Tstop are not taken into account.
  11. For output forces:

    When the contact type is asymmetric surface to surface, the output normal contact forces in Time History are calculated correctly, if the two surfaces are well separated.

  12. IVIS2=-1: is used to add adhesion in the normal direction and viscous resistive forces in the tangential direction. This can be used to model thermoplastic composite forming.
    When used, half of the contact gap is considered an adhesive zone and the other half a physical contact zone. Therefore, to maintain the same physical contact gap, the contact thickness should be doubled using Gap_scale.
    Figure 10.


    The adhesive force is only applied after secondary nodes have entered the physical contact zone and then move back into the adhesion zone. The adhesive force acts to prevent the node from moving out of the adhesion zone and is applied in the normal direction.
    F N = S i g M a x A d h A r e a 1 2 G a p ( 1 2 G a p P a d h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGobaabeaakiabg2da9maalaaabaGaam4uaiaadMgacaWG NbGaamytaiaadggacaWG4bGaamyqaiaadsgacaWGObGaeyyXICTaam yqaiaadkhacaWGLbGaamyyaaqaamaalaaabaGaaGymaaqaaiaaikda aaGaam4raiaadggacaWGWbaaaiaacIcadaWcaaqaaiaaigdaaeaaca aIYaaaaiaadEeacaWGHbGaamiCaiabgkHiTiaadcfadaWgaaWcbaGa amyyaiaadsgacaWGObaabeaakiaacMcaaaa@5523@
    Where,
    A r e a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk hacaWGLbGaamyyaaaa@3983@
    Area of the secondary surface
    P a d h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGHbGaamizaiaadIgaaeqaaaaa@39B3@
    Penetration into the adhesion zone
    G a p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadg gacaWGWbaaaa@389D@
    Contact gap as calculated in Comment 3

    The adhesive spring ruptures as the node exits the adhesion zone and will be recreated if the node enters the contact zone again.

    Viscous resistive forces are applied in the tangential direction when the secondary nodes enter into the adhesion zone. A viscous tangential opposing force is applied instead of a friction force and is calculated as:
    F T = ( V i s c A d h F a c t ) V i s c F l u i d A r e a 1 2 G a p V r e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGubaabeaakiabg2da9iabgkHiTiaacIcacaWGwbGaamyA aiaadohacaWGJbGaamyqaiaadsgacaWGObGaamOraiaadggacaWGJb GaamiDaiaacMcadaWcaaqaaiaadAfacaWGPbGaam4CaiaadogacaWG gbGaamiBaiaadwhacaWGPbGaamizaiabgwSixlaadgeacaWGYbGaam yzaiaadggaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaadEeacaWG HbGaamiCaaaacaWGwbWaaSbaaSqaaiaadkhacaWGLbGaamiBaaqaba aaaa@5B18@
    Where,
    A r e a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk hacaWGLbGaamyyaaaa@3983@
    Area of the secondary surface
    V r e l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGYbGaamyzaiaadYgaaeqaaaaa@39D0@
    Penetration into the adhesion zone
    G a p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadg gacaWGWbaaaa@389D@
    Contact gap
    Figure 11.


  13. Heat exchange
    By Ithe=1 (heat transfer activated) to consider heat exchange and heat friction in contact.
    • If Ithe_form=0, then heat exchange is between secondary nodes and constant temperature contact Tint.
    • If Ithe_form=1, then heat exchange is between all contact pieces.

    In this case Tint is used only when Ithe_form=0. The temperature of the main side is assumed to be constant (equal to Tint). If Ithe_form=1, then Tint is not taken into account. So, the nodal temperature of the main side will be considered.

    Contact heat exchange, can involve:
    • Thermal conduction

      Ithe =1 needs the material of the secondary side to be a thermal material using finite element formulation for heat transfer (/HEAT/MAT).

      Thermal conduction is computed when the secondary node falls into gap:

      g a p = max [ G a p min , min ( F s c a l e g a p g s , G a p max ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGNbGaam yyaiaadchacqGH9aqpciGGTbGaaiyyaiaacIhadaWadaqaaiaadEea caWGHbGaamiCamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaai ilaiGac2gacaGGPbGaaiOBamaabmaabaGaamOraiaadohacaWGJbGa amyyaiaadYgacaWGLbWaaSbaaSqaaiaadEgacaWGHbGaamiCaaqaba GccqGHflY1caWGNbWaaSbaaSqaaiaadohaaeqaaOGaaiilaiaadEea caWGHbGaamiCamaaBaaaleaaciGGTbGaaiyyaiaacIhaaeqaaaGcca GLOaGaayzkaaaacaGLBbGaayzxaaaaaa@5CD9@

      Heat exchange coefficient
      • If fct_IDK = 0, then Kthe is heat exchange coefficient and heat exchange depends only on heat exchange surface.
      • If fct_IDK0, Kthe is a scale factor and heat exchange depends on contact pressure:
        K = K t h e f K ( A s c a l e K , P ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGlbGaey ypa0Jaam4samaaBaaaleaacaWG0bGaamiAaiaadwgaaeqaaOGaeyyX ICTaciOzamaaBaaaleaacaWGlbaabeaakmaabmaabaGaamyqaiaado hacaWGJbGaamyyaiaadYgacaWGLbWaaSbaaSqaaiaadUeaaeqaaOGa aiilaiaadcfaaiaawIcacaGLPaaaaaa@49C3@

        While, f K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaciGGMbWaaS baaSqaaiaadUeaaeqaaaaa@3847@ is the function of fct_IDK.

    • Thermal conduction and radiation

      When fct_IDc ≠ 0, the heat transfer coefficient can change as function of distance d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaaaa@36F5@ when G a p < d D c o n d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaam yyaiaadchacqGH8aapcaWGKbGaeyizImQaamiramaaBaaaleaacaWG JbGaam4Baiaad6gacaWGKbaabeaaaaa@4155@ . In this zone, conductive and radiative heat transfer fluxes are considered.

      Abscises and ordinates of this function fct_IDc must be between 0 and 1.

      The heat transfer coefficient is computed as:

      K = K t h e ( P = 0 ) f c ( d G a p D c o n d G a p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9iaadUeadaWgaaWcbaGaamiDaiaadIgacaWGLbaa beaakmaabmaapaqaa8qacaWGqbGaeyypa0JaaGimaaGaayjkaiaawM caaiabgwSixlGacAgadaWgaaWcbaGaam4yaaqabaGcdaqadaWdaeaa peWaaSaaa8aabaWdbiaadsgacqGHsislcaWGhbGaamyyaiaadchaa8 aabaWdbiaadseacaWGJbGaam4Baiaad6gacaWGKbGaeyOeI0Iaam4r aiaadggacaWGWbaaaaGaayjkaiaawMcaaaaa@52D1@

      The maximum value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@36DC@ is equal to the value of Kthe when Kthe is constant. Otherwise, in case of Kthe depending on pressure, the maximum is equal to value of Kthe for contact pressure P = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuaiabg2da9iaaicdaaaa@38A1@ . K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saaaa@36DC@ drops to zero when distance is equal to Dcond.

    • Thermal radiation

      Radiation is considered in contact if F r a d 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbWaaS baaSqaaiaadkhacaWGHbGaamizaaqabaGccqGHGjsUcaaIWaaaaa@3CA7@ and the distance, d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamizaaaa@36F5@ , of the secondary node to the main segment is:

      G a p < d < D r a d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaam yyaiaadchacqGH8aapcaWGKbGaeyipaWJaamiramaaBaaaleaacaWG YbGaamyyaiaadsgaaeqaaaaa@3FB2@

      While Drad is the maximum distance for radiation computation. The default value for Drad is computed as the maximum of:
      • upper value of the Gap (at time 0) among all nodes
      • smallest side length of secondary element
      Note: It is recommended not to set the value too high for Drad, which may reduce the performance of Radioss Engine.

      A radiant heat transfer conductance is computed as:

      h r a d = F r a d ( T m 2 + T s 2 ) ( T m + T s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGObWaaS baaSqaaiaadkhacaWGHbGaamizaaqabaGccqGH9aqpcaWGgbWaaSba aSqaaiaadkhacaWGHbGaamizaaqabaGcdaqadaqaaiaadsfadaWgaa WcbaGaamyBaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG ubWaaSbaaSqaaiaadohaaeqaaOWaaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyyXIC9aaeWaaeaacaWGubWaaSbaaSqaaiaad2ga aeqaaOGaey4kaSIaamivamaaBaaaleaacaWGZbaabeaaaOGaayjkai aawMcaaaaa@502B@

      with

      F r a d = σ 1 ε 1 + 1 ε 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGgbWaaS baaSqaaiaadkhacaWGHbGaamizaaqabaGccqGH9aqpdaWcaaqaaiab eo8aZbqaamaalaaabaGaaGymaaqaaiabew7aLnaaBaaaleaacaaIXa aabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacqaH1oqzdaWgaaWc baGaaGOmaaqabaaaaOGaeyOeI0IaaGymaaaaaaa@4650@

      Where,
      σ = 5.669 × 10 8 [ W m 2 K 4 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCcq GH9aqpcaaI1aGaaiOlaiaaiAdacaaI2aGaaGyoaiabgEna0kaaigda caaIWaWaaWbaaSqabeaacqGHsislcaaI4aaaaOWaamWaaeaadaWcaa qaaiaacEfaaeaacaGGTbWaaWbaaSqabeaacaGGYaaaaOGaai4samaa CaaaleqabaGaaiinaaaaaaaakiaawUfacaGLDbaaaaa@48C7@
      Stefan Boltzman constant.
      ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaaGymaaqabaaaaa@38ED@
      Emissivity of secondary surface.
      ε 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaaGymaaqabaaaaa@38ED@
      Emissivity of main surface.
  14. Heat friction
    Frictional energy can be converted into heat when Ithe > 0 for interface.
    • Fheats is defined as the fraction of this energy which is converted into heat and transferred to the secondary side.
    • Fheatm is defined as the fraction of this energy which is converted into heat and transferred to the secondary side.

    The frictional heat Q F r i c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadAeacaWGYbGaamyAaiaadogaaeqaaaaa@3AF9@ is defined for a stiffness formulation:

    Q F r i c = F h e a t ( F a d h F t ) K F t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadAeacaWGYbGaamyAaiaadogaaeqaaOGaeyypa0JaamOr aiaadIgacaWGLbGaamyyaiaadshacqGHflY1daWcaaqaamaabmaaba GaamOramaaBaaaleaacaWGHbGaamizaiaadIgaaeqaaOGaeyOeI0Ia amOramaaBaaaleaacaWG0baabeaaaOGaayjkaiaawMcaaaqaaiaadU eaaaGaeyyXICTaamOramaaBaaaleaacaWG0baabeaaaaa@501B@

  15. Contact Stiffness based on stability condition.

    This method is interesting to be used especially in cases materials have big stiffness difference. Stability condition stiffness is computed from the mass and time step:

    K m s d t = S f t a c m m m m s m m + m s 1 Δ t c 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad2gacaWGZbGaamizaiaadshaaeqaaOGaeyypa0Jaam4u aiaadAgacaWG0bGaamyyaiaadogacaWGTbGaeyyXIC9aaSaaaeaaca WGTbWaaSbaaSqaaiaad2gaaeqaaOGaeyyXICTaamyBamaaBaaaleaa caGGZbaabeaaaOqaaiaad2gadaWgaaWcbaGaamyBaaqabaGccqGHRa WkcaWGTbWaaSbaaSqaaiaadohaaeqaaaaakiabgwSixpaabmaabaWa aSaaaeaacaaIXaaabaGaeuiLdqKaamiDamaaBaaaleaacaWGJbaabe aaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@58AC@

    Where,
    m m MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaad2gaaeqaaaaa@386B@ and m s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaad2gaaeqaaaaa@386B@
    Main and secondary nodal masses.
    Δ t c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarca WG0bWaaSbaaSqaaiaadogaaeqaaaaa@39CE@
    Initial solution time step or the user input value Dtstif.

    If Istf = 7, the contact stiffness is only calculated based on the stability condition.

    K n = K m s d t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaOGaeyypa0Jaam4samaaBaaaleaacaWGTbGa am4CaiaadsgacaWG0baabeaaaaa@3E22@

    Otherwise, if Ipstif > 0, the stability condition stiffness K m s d t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad2gacaWGZbGaamizaiaadshaaeqaaaaa@3B23@ is used if it is greater than K n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad6gaaeqaaaaa@384A@ , stiffness defined by the flag Istf (see Comment 2).

    K = max S t min , min S t max , max ( K n , K m s d t ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaey ypa0JaciyBaiaacggacaGG4bWaamWaaeaacaWGtbGaamiDamaaBaaa leaaciGGTbGaaiyAaiaac6gaaeqaaOGaaiilaiGac2gacaGGPbGaai OBamaabmaabaGaam4uaiaadshadaWgaaWcbaGaciyBaiaacggacaGG 4baabeaakiaacYcaciGGTbGaaiyyaiaacIhacaGGOaGaam4samaaBa aaleaacaWGUbaabeaakiaacYcacaWGlbWaaSbaaSqaaiaad2gacaWG ZbGaamizaiaadshaaeqaaOGaaiykaaGaayjkaiaawMcaaaGaay5wai aaw2faaaaa@580E@

    By default, in case of contact stiffness based on stability condition (if Istf = 7 or Ipstif > 0), nodal masses used for K m s d t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaad2gacaWGZbGaamizaiaadshaaeqaaaaa@3B23@ are calculated initially using the material density and elements size. It does not consider the added mass and can lead to low stiffness and contact instability. In that case, Ipstif= 2 can be used to consider initially added mass effect.