Electrostatic Analysis

An electrostatic analysis involves the calculation of electric potential in dielectric structures subjected to electrical loads.

The basic finite element equation to be solved for structures experiencing electrical loads can be expressed as:
K C φ=f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGdbaabeaakiabeA8aQjabg2da9iaadAgaaaa@3B73@
Where,
K C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaaBa aaleaacaWGdbaabeaaaaa@37BB@
Electrical permittance matrix
φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOgaaa@37B4@
Electric potential
f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaaaa@36E2@
Electric charge

This equilibrium equation of electric charge is solved for the unknown electric potential.

Electrostatic Analysis in OptiStruct

A standalone electrostatic analysis subcase in OptiStruct can be defined using ANALYSIS=ESTAT. Two types of loading can be defined in this analysis, namely charge or enforced potential which are time independent in nature. ESTAT is used for finding electric potential distribution in dielectric material, and evaluating electrostatic force on the structure, which can be used as external loading in structural analysis.

Example:
SUBCASE 1
   ANALYSIS ESTAT
   SPC = 1
   LOAD = 2
   TEMP(MAT) = 4

Input

A summary of the relevant input file entries in an electrostatic analysis.

The relevant Subcase Information Entries are:
Table 1. Subcase Information Entries
Entry Purpose
ANALYSIS = ESTAT Defines an electrostatic analysis subcase
The relevant Bulk Data Entries are:
Table 2. Bulk Data Entries
Entry Purpose
SPC, SPCD Potential
CHARGE Nodal charge
CHGAREA Area Charge Density
CHGVOL Volume Charge Density
MAT1PT Isotropic Permittivity Material
MAT2PT Anisotropic Permittivity Material
MATT1PT, MATT2PT Temperature Dependent Material
PGAPES Electrical permittance properties for gap elements
PCONTES Contact Permittance Coefficient (CPC) for CONTACT element
Note: In MAT1PT and MAT2PT, relative permittivity and absolute permittivity can be defined. When relative permittivity is defined, vacuum permittivity must be provided by PARAM, VAPMTV. Make sure the value of the vacuum permittivity is aligned with the physical quantity used in the model.

Analogy

The following table summarizes the analogy of some electrical analysis entries with the existing thermal/structural analysis.

Table 3. Analogy for Electrical Analysis
Type Electrostatic Analysis Electrical Conduction Analysis Thermal Analysis Structural Analysis
Result output Electrical potential Electrical potential Temperature Displacement
Electrical field Electrical field Temperature Gradient Strain
Electrical displacement Current density Heat flux Stress
Loads and boundary conditions CHARGE CURRENT FORCE
CHGAREA CDENST4 QBDY1 PLOAD4
CHGVOL QVOL GRAV
SPC (Electric potential) SPC (Electrical potential) SPC (Temperature) SPC (Displacement)
SPCD (Electrical potential) SPCD (Electrical potential) SPCD (Temperature) SPCD (Displacement)
MPC (Electric potential) MPC (Electric potential) MPC (Temperature) MPC (Displacement)
Material MAT1PT MAT1EC MAT4 MAT1
MAT2PT MAT2EC MAT5 MAT9
MATT1PT MATT1EC MATT4 MATT1
MATT2PT MATT2EC MATT5 MATT9

Problem Setup

Example of an electrostatic analysis.

The following snippet of an input file gives an example of an electrostatic analysis setup:
$ *************************************************************
$ EXAMPLE TO DEMONSTRATE AN ELECTRICAL ANALYSIS SETUP
$ *************************************************************
OLOAD     = 11 
VOLTAGE   = 11    
GPCHARGE = 11    
ESTATFORCE(COMP,ESET=10) = 20
 
  
SUBCASE        2
  LABEL ELECTROSTATICS
  ANALYSIS ESTAT
  LOAD   =   3
  SPC     =  10
  

BEGIN BULK
$ vacuum permittivity
PARAM,VAPMTV,8.8541878128130E-12  
...

Example

This example demonstrates the modeling of electrostatic force in an electrode system.

The model consists of 4 electrodes, 2 of them are with high voltage (1000V), and the other 2 are with low voltage (-1000V). Air domain surrounding the 4 electrodes are also included in the model.
Figure 1. Electrode model


Non-zero SPC is applied to the grids on electrode.

Figure 2. Electric Potential Distribution on System


Figure 3. Electrostatic Force on Grids of Electrodes


Output

Supported output requests for electrostatic analysis.

Currently, results are available in .h3d format in a separate *_estat.h3d file. Electrostatic force can be output in ASCII format.
Table 4. Supported Output Requests for Electrostatic Analysis
Result Purpose Details
VOLTAGE Voltage Available by default
ELECFLUX Electric Displacement
ELECFIELD Electric field Available by default
GPCHARGE Grid Point Charge
OLOAD Applied nodal charge
SPCCHARGE Reaction Charge
MPCFORCE MPC Charge (Free Charge inducted on outer surface of a conductor)
ESTATFORCE Electrostatic force

A charge balance summary table is available in the .out file for electrostatic analysis. This is similar to the SPCFORCE output table and consists of total applied charge and SPC charge.