Estimate Simulation Time

It is challenging to estimate the exact real time required for a DEM simulation, as each simulation and each computer is different.

Time Step

One of the key numbers in DEM simulation is the Rayleigh Time Step which is the time taken for a shear wave to propagate through a solid particle. It is, therefore, a theoretical maximum Time Step for a DEM simulation of a quasi-static particulate collection in which the coordination number (total number of contacts per particle) for each particle remains above 1 and is defined as:

T R = πR ρ G 0.1631υ+0.8766 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGsbaabeaakiabg2da9maalaaabaGaeqiWdaNaamOuamaa kaaabaWaaSaaaeaacqaHbpGCaeaacaWGhbaaaaWcbeaaaOqaaiaaic dacaGGUaGaaGymaiaaiAdacaaIZaGaaGymaiabew8a1jabgUcaRiaa icdacaGGUaGaaGioaiaaiEdacaaI2aGaaGOnaaaaaaa@49BD@

where R is the particle’s radius, ρ its density, G the Shear modulus, and v the Poisson’s ratio. This formula assumes that the relative velocity between contacting particles is very small. Other than for quasi-static systems, in practice some fraction of this maximum value is used, and for high coordination numbers (4 and above) a typical Time Step of 0.2TR (20%) is recommended. For lower coordination numbers, 0.4TR (40%) is more appropriate.

Hertzian Contact

While the Rayleigh Time Step is a suitable starting point for quasi-static simulations, a shorter Time Step is required for systems undergoing flow. Consider two elements approaching each other at a speed v. In one Time Step, t, the maximum possible overlap is defined as:

d max =υt MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaaciGGTbGaaiyyaiaacIhaaeqaaOGaeyypa0JaeqyXduNaamiD aaaa@3DAE@

In DEM, particles undergoing elastic (Hertzian) contact are treated as overlapping and this overlap is equated to a surface compression. t in the above equation must be such that the maximum overlap is lower than the theoretical maximum overlap for Hertzian contact. In practice, to get a good numerical integral to the contact graph, at least six time points should occur - three during approach and three during separation (though ten is more desirable) .

Elastic Impact

From the Hertz theory of elastic collision, the total time of contact is defined as:

T h = 2.87 ( m * 2 R * E * 2 V z ) 1 5 MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGObaabeaakiabg2da9iaaikdacaGGUaGaaGioaiaaiEda caGGOaWaaSaaaeaacaWGTbWaaWbaaSqabeaacaGGQaGaaGOmaaaaaO qaaiaadkfadaahaaWcbeqaaiaacQcaaaGccaWGfbWaaWbaaSqabeaa caGGQaGaaGOmaaaakiaadAfadaWgaaWcbaGaamOEaaqabaaaaOGaai ykamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaGynaaaaaaaaaa@47D2@
where
1 m * = 1 m i + 1 m j MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaamyBamaaCaaaleqabaGaaiOkaaaaaaGccqGH9aqpdaWc aaqaaiaaigdaaeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaaaakiabgU caRmaalaaabaGaaGymaaqaaiaad2gadaWgaaWcbaGaamOAaaqabaaa aaaa@4038@
where mi and mj are the masses of the two elements.
1 R * = 1 R i + 1 R j MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaamOuamaaCaaaleqabaGaaiOkaaaaaaGccqGH9aqpdaWc aaqaaiaaigdaaeaacaWGsbWaaSbaaSqaaiaadMgaaeqaaaaakiabgU caRmaalaaabaGaaGymaaqaaiaadkfadaWgaaWcbaGaamOAaaqabaaa aaaa@3FE7@
where Ri and Rj are the radii of the two elements.
1 E * = 1 υ 2 i E i + 1 υ 2 j E j MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaamyramaaCaaaleqabaGaaiOkaaaaaaGccqGH9aqpdaWc aaqaaiaaigdacqGHsislcqaHfpqDdaahaaWcbeqaaiaaikdaaaGcda WgaaWcbaGaamyAaaqabaaakeaacaWGfbWaaSbaaSqaaiaadMgaaeqa aaaakiabgUcaRmaalaaabaGaaGymaiabgkHiTiabew8a1naaCaaale qabaGaaGOmaaaakmaaBaaaleaacaWGQbaabeaaaOqaaiaadweadaWg aaWcbaGaamOAaaqabaaaaaaa@4957@
where νi and νj are the Poisson’s ratios of the two materials.
V z = V i V j MathType@MTEF@5@5@+= feaahyart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWG6baabeaakiabg2da9iaadAfadaWgaaWcbaGaamyAaaqa baGccqGHsislcaWGwbWaaSbaaSqaaiaadQgaaeqaaaaa@3DED@
where Vz is the relative velocity and Vi and Vj are the velocities of the two elements.