/MAT/LAW126 (JOHNSON_HOLMQUIST_CONCRETE)

Block Format Keyword This material law describes the behavior of brittle materials, more specifically dedicated to concrete.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW126/mat_ID/unit_ID or /MAT/JOHNSON_HOLMQUIST_CONCRETE/mat_ID/unit_ID
mat_title
ρ i
G
a b n f c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaS baaSqaaiaadogaaeqaaaaa@385F@ T
c ε ˙ 0 FCUT σ M A X * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamytaiaadgeacaWGybaabaGaaiOkaaaaaaa@3B73@ ε f min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamOzaaqaaiGac2gacaGGPbGaaiOBaaaaaaa@3BF1@
PC μ C MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaam4qaaqabaaaaa@390A@ PL μ L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaam4qaaqabaaaaa@390A@
K1 K2 K3
D1 D2 IDEL ε p m a x

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
G Shear modulus.

(Real)

[ Pa ]
A Normalized cohesive strength.

(Real)

B Normalized pressure hardening modulus.

(Real)

N Pressure hardening exponent.

(Real)

f c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaS baaSqaaiaadogaaeqaaaaa@385F@ Quasi-static uniaxial compressive strength.

(Real)

[ Pa ]
T Maximum hydrostatic tensile pressure.

(Real)

[ Pa ]
C Strain rate coefficient.
= 0 (Default)
No strain rate effect

(Real)

ε ˙ 0 Reference strain rate.

Default = 1.0 (Real)

[ 1 s ]
FCUT Cutoff frequency for strain rate filtering.
= 0
No strain rate filtering

(Real)

[Hz]
σ M A X * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamytaiaadgeacaWGybaabaGaaiOkaaaaaaa@3B73@ Maximum normalized strength.

Default = 1020 (Real)

ε f min MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda qhaaWcbaGaamOzaaqaaiGac2gacaGGPbGaaiOBaaaaaaa@3BF1@ Minimum fracture strain.

Default = 10-20 (Real)

PC Crushing pressure.

(Real)

[ Pa ]
μ C MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaam4qaaqabaaaaa@390A@ Crushing volumetric strain.

(Real)

PL Locking pressure.

(Real)

[ Pa ]
μ L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaam4qaaqabaaaaa@390A@ Locking plastic volumetric strain.

(Real)

K1 Linear bulk stiffness.

(Real)

[ Pa ]
K2 Quadratic bulk stiffness.

(Real)

[ Pa ]
K3 Cubic bulk stiffness.

(Real)

[ Pa ]
D1 Damage parameter.

(Real)

D2 Damage exponent.

(Real)

IDEL Element deletion flag:
= 0 (Default)
No element deletion
= 1
Tensile failure when P * + T * < 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaGGQaaaaOGaey4kaSIaamivamaaCaaaleqabaGaaiOk aaaakiabgYda8iaaicdaaaa@3C78@
= 2
Failure when critical plastic strain is reached ε p > ε p max MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH1oqzda WgaaWcbaGaamiCaaqabaGccqGH+aGpcqaH1oqzdaqhaaWcbaGaamiC aaqaaiGac2gacaGGHbGaaiiEaaaaaaa@3FD7@
= 3
Failure when σ Y 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaamywaaqabaGccqGHKjYOcaaIWaaaaa@3BA6@ (recommended)
= 4
Failure when D = 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey ypa0JaaGymaaaa@38EA@

(Integer)

ε p m a x Critical plastic strain for element deletion.

Default = 1020 (Real)

Example

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
Unit for material
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW126/1/1
Concrete
#        Init. dens.
            2.440E-9
#                  G
               14860
#                  A                   B                   N                  FC                   T
                0.79                1.60                0.61                  48                   4
#                  C                EPS0                FCUT               SFMAX               EFMIN
               0.007                 1.0               10000                   7                0.01
#                 PC                 MUC                  PL                 MUL
                  16               0.001                 800                 0.1
#                 K1                  K2                  K3
               85000             -171000              208000
#                 D1                  D2                IDEL             EPS_MAX
                0.04                 1.0                   3                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. This material law is based on the theory of Johnson-Holmquist-Cook model theory (also called Johnson-Holmquist-Concrete). It was proposed and designed for a concrete application. In this model, the spherical and deviatoric behavior are separated. It considers the effect of damage and strain rate sensitivity.
  2. The spherical behavior is described with a constitutive equation based on hydrostatic pressure (considered positive in compression). This behavior is divided into 3 regions (Figure 1) in the evolution hydrostatic pressure versus volumetric strain denoted μ .

    P = K 0 μ if P P C [ I ] K 0 + ( K 1 K 0 ) μ p μ L μ μ p if P > P C  and  μ p μ L [ II ] K 1 μ ^ + K 2 μ ^ 2 + K 3 μ ^ 3 for the other cases [ III ] with K 0 = P C μ C μ ^ = μ μ L 1 + μ L μ = ρ ρ 0 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGqb Gaeyypa0ZaaiqaaeaafaqabeWaeaaaaeaacaWGlbWaaSbaaSqaaiaa icdaaeqaaOGaeqiVd0gabaGaaeyAaiaabAgaaeaacaWGqbGaeyizIm QaamiuamaaBaaaleaacaWGdbaabeaaaOqaaiaacUfacaqGjbGaaiyx aaqaamaabmaabaGaam4samaaBaaaleaacaaIWaaabeaakiabgUcaRi aacIcacaWGlbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaam4samaa BaaaleaacaaIWaaabeaakiaacMcadaWcaaqaaiabeY7aTnaaBaaale aacaWGWbaabeaaaOqaaiabeY7aTnaaBaaaleaacaWGmbaabeaaaaaa kiaawIcacaGLPaaadaqadaqaaiabeY7aTjabgkHiTiabeY7aTnaaBa aaleaacaWGWbaabeaaaOGaayjkaiaawMcaaaqaaiaabMgacaqGMbaa baGaamiuaiabg6da+iaadcfadaWgaaWcbaGaam4qaaqabaGccaqGGa Gaaeyyaiaab6gacaqGKbGaaeiiaiabeY7aTnaaBaaaleaacaWGWbaa beaakiabgsMiJkabeY7aTnaaBaaaleaacaWGmbaabeaaaOqaaiaacU facaqGjbGaaeysaiaac2faaeaacaWGlbWaaSbaaSqaaiaaigdaaeqa aOGafqiVd0MbaKaacqGHRaWkcaWGlbWaaSbaaSqaaiaaikdaaeqaaO GafqiVd0MbaKaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGlbWa aSbaaSqaaiaaiodaaeqaaOGafqiVd0MbaKaadaahaaWcbeqaaiaaio daaaaakeaaaeaacaqGMbGaae4BaiaabkhacaqGGaGaaeiDaiaabIga caqGLbGaaeiiaiaab+gacaqG0bGaaeiAaiaabwgacaqGYbGaaeiiai aabogacaqGHbGaae4CaiaabwgacaqGZbaabaGaai4waiaabMeacaqG jbGaaeysaiaac2faaaaacaGL7baaaeaacaqG3bGaaeyAaiaabshaca qGObaabaGaam4samaaBaaaleaacaaIWaaabeaakiabg2da9maalaaa baGaamiuamaaBaaaleaacaWGdbaabeaaaOqaaiabeY7aTnaaBaaale aacaWGdbaabeaaaaaakeaacuaH8oqBgaqcaiabg2da9maalaaabaGa eqiVd0MaeyOeI0IaeqiVd02aaSbaaSqaaiaadYeaaeqaaaGcbaGaaG ymaiabgUcaRiabeY7aTnaaBaaaleaacaWGmbaabeaaaaaakeaacqaH 8oqBcqGH9aqpdaWcaaqaaiabeg8aYbqaaiabeg8aYnaaBaaaleaaca aIWaaabeaaaaGccqGHsislcaaIXaaaaaa@B3FC@

    In the first region, the pressure response is supposed linear and elastic. In the second region, the microcavities of the material are supposed to be crushed, generating a plastic volumetric strain denoted μ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadchaaeqaaaaa@38CE@ , modifying linearly the bulk modulus from K 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaaicdaaeqaaaaa@3816@ and K 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaS baaSqaaiaaicdaaeqaaaaa@3816@ . When μ p = μ L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH8oqBda WgaaWcbaGaamiCaaqabaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaamit aaqabaaaaa@3CFA@ all the cavities have been crushed and the material becomes fully dense. Then, the pressure evolution follows a polynomial equation of state.
    Figure 1. Hydrostatic pressure variation with respect to volumetric strain


  3. The deviatoric behavior is defined with an elasto-plastic behavior, where the normalized yield stress is both a yielding and a damaging limit. Its expression is:
    • If P * > 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaGGQaaaaOGaeyOpa4JaaGimaaaa@39DC@ (compressive loadings):
      σ Y * = min σ M A X * , A 1 D + B P * N 1 + C ln ε ˙ ε ˙ 0 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamywaaqaaiaacQcaaaGccqGH9aqpciGGTbGaaiyAaiaa c6gadaqadaqaaiabeo8aZnaaDaaaleaacaWGnbGaamyqaiaadIfaae aacaGGQaaaaOGaaiilamaabmaabaGaamyqamaabmaabaGaaGymaiab gkHiTiaadseaaiaawIcacaGLPaaacqGHRaWkcaWGcbWaaeWaaeaaca WGqbWaaWbaaSqabeaacaGGQaaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaacaWGobaaaaGccaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaS Iaam4qamaaamaabaGaciiBaiaac6gadaWcaaqaaiqbew7aLzaacaaa baGafqyTduMbaiaadaWgaaWcbaGaaGimaaqabaaaaaGccaGLPmIaay PkJaWaaSbaaSqaaiabgUcaRaqabaaakiaawIcacaGLPaaaaiaawIca caGLPaaaaaa@5E6D@

      Where, P * = P f c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaGGQaaaaOGaeyypa0ZaaSaaaeaacaWGqbaabaGaamOz amaaBaaaleaacaWGJbaabeaaaaaaaa@3C04@ bounded by P * = ( 1 D ) T * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaGGQaaaaOGaeyypa0JaeyOeI0IaaiikaiaaigdacqGH sislcaWGebGaaiykaiaadsfadaahaaWcbeqaaiaacQcaaaaaaa@3F8B@ .

    • If P * 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaW baaSqabeaacaGGQaaaaOGaeyizImQaaGimaaaa@3A89@ (tensile loadings):
      σ Y * = A 1 + P T 1 D 1 + C ln ε ˙ ε ˙ 0 + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamywaaqaaiaacQcaaaGccqGH9aqpcaWGbbWaaeWaaeaa caaIXaGaey4kaSYaaSaaaeaacaWGqbaabaGaamivaaaaaiaawIcaca GLPaaadaqadaqaaiaaigdacqGHsislcaWGebaacaGLOaGaayzkaaWa aeWaaeaacaaIXaGaey4kaSIaam4qamaaamaabaGaciiBaiaac6gada Wcaaqaaiqbew7aLzaacaaabaGafqyTduMbaiaadaWgaaWcbaGaaGim aaqabaaaaaGccaGLPmIaayPkJaWaaSbaaSqaaiabgUcaRaqabaaaki aawIcacaGLPaaaaaa@51AA@
      To get the yield stress, the normalized value is multiplied by f c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaS baaSqaaiaadogaaeqaaaaa@385F@ . These two yield stresses shapes (for compressive and tension loadings) are plotted for a damage value of 0 (initial material) and 1 (fully fractured material) in Figure 2:
      Figure 2. Yield stress evolution with respect to hydrostatic pressure


      To trigger the deviatoric elasto-plastic behavior, the normalized yield stress is compared to the current normalized equivalent von Mises stress:

      σ V M * = σ V M f c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadAfacaWGnbaabaGaaiOkaaaakiabg2da9maalaaabaGa eq4Wdm3aaSbaaSqaaiaadAfacaWGnbaabeaaaOqaaiaadAgadaWgaa WcbaGaam4yaaqabaaaaaaa@4108@

      This allows to compute the evolution of the deviatoric plastic strain denoted ε p .

  4. The damage variable evolution is dependent to both volumetric and deviatoric plastic strain. Its expression is given by:
    D = Δ μ p + Δ ε p ε f p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey ypa0ZaaabqaeaadaWcaaqaaiabfs5aejabeY7aTnaaBaaaleaacaWG WbaabeaakiabgUcaRiabfs5aejabew7aLnaaBaaaleaacaWGWbaabe aaaOqaaiabew7aLnaaDaaaleaacaWGMbaabaGaamiCaaaaaaaabeqa b0GaeyyeIuoaaaa@475C@

    Where, the effective strain at failure is defined by:

    ε f p = max D 1 P * + T * D 2 , ε f min with   P * = P f c  and   T * = T f c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaiabew 7aLnaaDaaaleaacaWGMbaabaGaamiCaaaakiabg2da9iGac2gacaGG HbGaaiiEamaabmaabaGaamiramaaBaaaleaacaaIXaaabeaakmaabm aabaGaamiuamaaCaaaleqabaGaaiOkaaaakiabgUcaRiaadsfadaah aaWcbeqaaiaacQcaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaads eadaWgaaadbaGaaGOmaaqabaaaaOGaaiilaiabew7aLnaaDaaaleaa caWGMbaabaGaciyBaiaacMgacaGGUbaaaaGccaGLOaGaayzkaaaaba Gaae4DaiaabMgacaqG0bGaaeiAaiaabccacaqGGaGaamiuamaaCaaa leqabaGaaiOkaaaakiabg2da9maaliaabaGaamiuaaqaaiaadAgada WgaaWcbaGaam4yaaqabaaaaOGaaeiiaiaabggacaqGUbGaaeizaiaa bccacaqGGaGaamivamaaCaaaleqabaGaaiOkaaaakiabg2da9maali aabaGaamivaaqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaaaaaa@6469@

  5. Time history and animation output is available using these USRi variables.
    • USR1: Plastic volumetric strain μ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadchaaeqaaaaa@38CE@
    • USR2: Bulking pressure P MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbaaaa@3735@
    • USR3: Volumetric strain μ
    • USR4: Yield stress σ Y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda WgaaWcbaGaamywaaqabaaaaa@392D@
  6. Strain rate filtering can be used and activated when a cutoff frequency FCUT for filtering is defined.
  7. The damage variable can be plotted in ANIM and H3D file using the output option DAMG.
  8. To avoid damage mesh dependency, due to mesh size or orientation, the non-local regularization method can be used (/NONLOCAL/MAT). In this case, the sum of the deviatoric plastic strain ε p and volumetric plastic strain μ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadchaaeqaaaaa@38CE@ is regularized and used for damage evolution:
    D = Δ μ p + Δ ε p n l ε f p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebGaey ypa0ZaaabqaeaadaWcaaqaamaabmaabaGaeuiLdqKaeqiVd02aaSba aSqaaiaadchaaeqaaOGaey4kaSIaeuiLdqKaeqyTdu2aaSbaaSqaai aadchaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaad6gacaWGSbaa beaaaOqaaiabew7aLnaaDaaaleaacaWGMbaabaGaamiCaaaaaaaabe qab0GaeyyeIuoaaaa@4AFF@

    The regularized sum can be plotted using /ANIM/ELEM/NL_EPSP or /H3D/ELEM/NL_EPSP.

1 A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressure, G.R. Johnson, T.J. Holmquist, W.H. Cook,1993