/MAT/LAW124 (CDPM2)

Block Format Keyword A concrete material law accounting for plasticity, damage, and strain rate effect.

A Hillerborg regularization method is also available to avoid mesh size dependency in tension. Only a few parameters are needed to use this material law, which makes it user-friendly.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW124/mat_ID/unit_ID or /MAT/CDPM2/mat_ID/unit_ID
mat_title
ρ i                
E ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiabe2 7aUbaa@39F3@   IDEL   IRATE FCUT
ECC Q h0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadg fakmaaBaaaleaacaWGObGaaGimaaqabaaaaa@3AEE@ f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadA gakmaaBaaaleaajugybiaadshaaSqabaaaaa@3B2F@ f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadA gakmaaBaaaleaajugybiaadshaaSqabaaaaa@3B2F@ HP
AH BH CH DH  
AS BS DF   DFLAG DTYPE IREG
WF WF1 FT1 EFC  

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID (Optional) Unit identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density.

(Real)

[ kg m 3 ]
E Young’s modulus.

(Real)

[ Pa ]
ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiabe2 7aUbaa@39F3@ Poisson’s ratio.

(Real)

IDEL Element deletion flag.
= 1 (Default)
Not activated
= 2
Activated

(Integer)

IRATE Rate dependency flag.
= 1 (Default)
Not activated
= 2
Activated

(Integer)

FCUT Strain rate filtering frequency

Default = 10 kHz (Real)

[Hz]
ECC Eccentricity.

Default in Comment 5 (Real)

Q h 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadg fakmaaBaaaleaacaWGObGaaGimaaqabaaaaa@3AEE@ Initial hardening.

Default = 0.3 (Real)

f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadA gakmaaBaaaleaajugybiaadshaaSqabaaaaa@3B2F@ Strength limit in tension.

(Real)

[ Pa ]
f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqOqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugybiaadA gakmaaBaaaleaajugybiaadshaaSqabaaaaa@3B2F@ Strength limit in compression.

(Real)

[ Pa ]
HP Hardening modulus.

(Real)

AH Compressive damage 1st ductility parameter.

Default = 0.08 (Real)

BH Compressive damage 2nd ductility parameter.

Default = 0.003 (Real)

CH Compressive damage 3rd ductility parameter.

Default = 2.0 (Real)

 
DH Compressive damage 4th ductility parameter.

Default = 1.0E-6 (Real)

AS First ductility measure parameter.

Default = 15.0 (Real)

BS Second ductility measure parameter.

Default = 1.0 (Real)

DF Dilation coefficient.

Default = 0.85 (Real)

DFLAG Damage model type.
= 1 (Default)
Non-symmetric damage
= 2
Isotropic
= 3
Multiplicative

(Integer)

DTYPE Tensile damage shape.
= 1
Linear
= 2 (Default)
Bi-linear
= 3
Exponential

(Integer)

 
IREG Regularization flag.
= 1
Not activated
= 2 (Default)
Activated

(Integer)

 
WF Tensile inelastic displacement/strain at failure.

Dimension depends on IREG parameter value. 3

(Real)

[ m ]
WF1 Tensile inelastic displacement/strain at softening slope change (bilinear damage only).

Dimension depends on IREG parameter value. 3

Default = 0.15*WF (Real)

[ m ]
FT1 Tensile strength at WF1.

Default = 0.3*FT (Real)

[ Pa ]
EFC Compressive inelastic strain close to failure.

Default = 1.0E-4 (Real)

 

Example

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  Mg                  mm                   s
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW124/1/1
Concrete CDPM2
#        Init. dens.
              2.3E-9                  
#                  E                  NU                IDEL               IRATE                FCUT
               28000                0.19                   0                   1                   0
#                ECC                 QH0                  FT                  FC                  HP
                   0                   0                 3.5                33.6                 0.5
#                 AH                  BH                  CH                  DH
                   0                   0                   0                   0
#                 AS                  BS                  DF               DFLAG     DTYPE      Ireg
                   0                   0                   0                   1         1         1
#                 WF                 WF1                 FT1                 EFC     
               0.006                   0                   0              0.0005  
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The CDPM2 material law is a user-friendly concrete material law, which considers several phenomena. Only a few parameters are mandatory to easily use this constitutive model. For this law, the elastic behavior is supposed to be isotropic. The plastic behavior is then characterized by the following yield function (Figure 1):(1)
    f p = 1 q h 1 κ p ρ ¯ 6 f c + σ ¯ v f c 2 + 3 2 ρ ¯ f c 2 + m 0 q h 1 2 κ p q h 2 κ p ρ ¯ 6 f c r cos θ ¯ + σ ¯ v f c q h 1 2 κ p q h 2 2 κ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGWbaabeaakiabg2da9maacmaabaWaamWaaeaacaaIXaGa eyOeI0IaamyCamaaBaaaleaacaWGObGaaGymaaqabaGcdaqadaqaai abeQ7aRnaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMcaaaGaay5w aiaaw2faamaabmaabaWaaSaaaeaacuaHbpGCgaqeaaqaamaakaaaba GaaGOnaaWcbeaakiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaey4k aSYaaSaaaeaacuaHdpWCgaqeamaaBaaaleaacaWG2baabeaaaOqaai aadAgadaWgaaWcbaGaam4yaaqabaaaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOGaey4kaSYaaOaaaeaadaWcaaqaaiaaiodaae aacaaIYaaaaaWcbeaakmaalaaabaGafqyWdiNbaebaaeaacaWGMbWa aSbaaSqaaiaadogaaeqaaaaaaOGaay5Eaiaaw2haamaaCaaaleqaba GaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGaaGimaaqabaGccaWG XbWaa0baaSqaaiaadIgacaaIXaaabaGaaGOmaaaakmaabmaabaGaeq OUdS2aaSbaaSqaaiaadchaaeqaaaGccaGLOaGaayzkaaGaamyCamaa BaaaleaacaWGObGaaGOmaaqabaGcdaqadaqaaiabeQ7aRnaaBaaale aacaWGWbaabeaaaOGaayjkaiaawMcaamaadmaabaWaaSaaaeaacuaH bpGCgaqeaaqaamaakaaabaGaaGOnaaWcbeaakiaadAgadaWgaaWcba Gaam4yaaqabaaaaOGaamOCamaabmaabaGaci4yaiaac+gacaGGZbGa fqiUdeNbaebaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaaiqbeo8aZz aaraWaaSbaaSqaaiaadAhaaeqaaaGcbaGaamOzamaaBaaaleaacaWG JbaabeaaaaaakiaawUfacaGLDbaacqGHsislcaWGXbWaa0baaSqaai aadIgacaaIXaaabaGaaGOmaaaakmaabmaabaGaeqOUdS2aaSbaaSqa aiaadchaaeqaaaGccaGLOaGaayzkaaGaamyCamaaDaaaleaacaWGOb GaaGOmaaqaaiaaikdaaaGcdaqadaqaaiabeQ7aRnaaBaaaleaacaWG WbaabeaaaOGaayjkaiaawMcaaaaa@91A3@

    Where the Haigh-Westergaard coordinates in stresses space are considered:

    σ ¯ v = tr ( σ ) 3 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbae badaWgaaWcbaGaamODaaqabaGccqGH9aqpdaWcaaqaaiaabshacaqG YbGaaiikaiaaho8acaGGPaaabaGaaG4maaaaaaa@3F67@ , ρ ¯ = 2 J 2 = s : s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyWdiNbae bacqGH9aqpdaGcaaqaaiaaikdacaWGkbWaaSbaaSqaaiaaikdaaeqa aaqabaGccqGH9aqpdaGcaaqaaiaahohacaGG6aGaaC4CaaWcbeaaaa a@3F35@ , θ ¯ = 1 3 arccos 3 3 2 J 3 J 2 3 / 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiUdeNbae bacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIZaaaaiGacggacaGGYbGa ai4yaiaacogacaGGVbGaai4CamaabmaabaWaaSaaaeaacaaIZaWaaO aaaeaacaaIZaaaleqaaaGcbaGaaGOmaaaadaWcaaqaaiaadQeadaWg aaWcbaGaaG4maaqabaaakeaacaWGkbWaa0baaSqaaiaaikdaaeaaca aIZaGaai4laiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@4998@

    Where,
    κ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS baaSqaaiaadchaaeqaaaaa@38C6@
    Hardening variable
    f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGJbaabeaaaaa@37F2@
    Limit strength in compression
    f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGJbaabeaaaaa@37F2@
    Limit strength in tension
    m 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaaIWaaabeaaaaa@37CB@
    A parameter considering the effect of eccentricity e c c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGJbGaam4yaaqabaaaaa@38DA@
    (2)
    m 0 = 3 f c 2 f t 2 f c f t e c c e c c + 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaaIWaaabeaakiabg2da9maalaaabaGaaG4mamaabmaabaGa amOzamaaDaaaleaacaWGJbaabaGaaGOmaaaakiabgkHiTiaadAgada qhaaWcbaGaamiDaaqaaiaaikdaaaaakiaawIcacaGLPaaaaeaacaWG MbWaaSbaaSqaaiaadogaaeqaaOGaamOzamaaBaaaleaacaWG0baabe aaaaGcdaWcaaqaaiaadwgadaWgaaWcbaGaam4yaiaadogaaeqaaaGc baGaamyzamaaBaaaleaacaWGJbGaam4yaaqabaGccqGHRaWkcaaIXa aaaaaa@4D6B@


    Figure 1. CDPM2 model yield function shape (from Grassl)
    Then q h 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGymaaqabaaaaa@38BD@ and q h 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGymaaqabaaaaa@38BD@ are the two hardening functions defined with (Figure 2):(3)
    q h 1 κ p = q h 0 + 1 q h 0 κ p 3 3 κ p 2 + 2 κ p i f κ p < 1 1 i f κ p 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGymaaqabaGcdaqadaqaaiabeQ7aRnaaBaaaleaa caWGWbaabeaaaOGaayjkaiaawMcaaiabg2da9maaceaabaqbaeqabi WaaaqaaiaadghadaWgaaWcbaGaamiAaiaaicdaaeqaaOGaey4kaSYa aeWaaeaacaaIXaGaeyOeI0IaamyCamaaBaaaleaacaWGObGaaGimaa qabaaakiaawIcacaGLPaaadaqadaqaaiabeQ7aRnaaDaaaleaacaWG WbaabaGaaG4maaaakiabgkHiTiaaiodacqaH6oWAdaqhaaWcbaGaam iCaaqaaiaaikdaaaGccqGHRaWkcaaIYaGaeqOUdS2aaSbaaSqaaiaa dchaaeqaaaGccaGLOaGaayzkaaaabaGaamyAaiaadAgaaeaacqaH6o WAdaWgaaWcbaGaamiCaaqabaGccqGH8aapcaaIXaaabaGaaGymaaqa aiaadMgacaWGMbaabaGaeqOUdS2aaSbaaSqaaiaadchaaeqaaOGaey yzImRaaGymaaaaaiaawUhaaaaa@6663@
    (4)
    q h 2 κ p = 1 i f κ p < 1 1 + H p κ p 1 i f κ p 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGOmaaqabaGcdaqadaqaaiabeQ7aRnaaBaaaleaa caWGWbaabeaaaOGaayjkaiaawMcaaiabg2da9maaceaabaqbaeqabi WaaaqaaiaaigdaaeaacaWGPbGaamOzaaqaaiabeQ7aRnaaBaaaleaa caWGWbaabeaakiabgYda8iaaigdaaeaacaaIXaGaey4kaSIaamisam aaBaaaleaacaWGWbaabeaakmaabmaabaGaeqOUdS2aaSbaaSqaaiaa dchaaeqaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaqaaiaadMgaca WGMbaabaGaeqOUdS2aaSbaaSqaaiaadchaaeqaaOGaeyyzImRaaGym aaaaaiaawUhaaaaa@576B@


    Figure 2. Hardening functions shape (from Grassl)

    Here, q h 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGObGaaGimaaqabaaaaa@38BC@ is the initial hardening defined so that 0 < q h 0 < 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgY da8iaadghadaWgaaWcbaGaamiAaiaaicdaaeqaaOGaeyipaWJaaGym aaaa@3C43@ . H p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisamaaBa aaleaacaWGWbaabeaaaaa@37E1@ is the hardening modulus whose recommended values are 0.01 without strain rate dependency (IRATE = 1), and 0.5 with rate effects (IRATE = 2). The evolution of the internal variable κ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS baaSqaaiaadchaaeqaaaaa@38C6@ is detailed below.

    The William-Warnke function is used to develop the deviatoric section shape between tension and compression (Figure 1).(5)
    r cos θ ¯ = 4 1 e c c 2 cos 2 θ ¯ + 2 e c c 1 2 2 1 e c c 2 cos θ ¯ + 2 e c c 1 4 1 e c c 2 cos 2 θ ¯ + 5 e c c 2 4 e c c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaabm aabaGaci4yaiaac+gacaGGZbGafqiUdeNbaebaaiaawIcacaGLPaaa cqGH9aqpdaWcaaqaaiaaisdadaqadaqaaiaaigdacqGHsislcaWGLb Waa0baaSqaaiaadogacaWGJbaabaGaaGOmaaaaaOGaayjkaiaawMca aiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiqbeI7aXz aaraGaey4kaSYaaeWaaeaacaaIYaGaamyzamaaBaaaleaacaWGJbGa am4yaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaaGcbaGaaGOmamaabmaabaGaaGymaiabgkHiTiaadwga daqhaaWcbaGaam4yaiaadogaaeaacaaIYaaaaaGccaGLOaGaayzkaa Gaci4yaiaac+gacaGGZbGafqiUdeNbaebacqGHRaWkdaqadaqaaiaa ikdacaWGLbWaaSbaaSqaaiaadogacaWGJbaabeaakiabgkHiTiaaig daaiaawIcacaGLPaaadaGcaaqaaiaaisdadaqadaqaaiaaigdacqGH sislcaWGLbWaa0baaSqaaiaadogacaWGJbaabaGaaGOmaaaaaOGaay jkaiaawMcaaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaa kiqbeI7aXzaaraGaey4kaSIaaGynaiaadwgadaqhaaWcbaGaam4yai aadogaaeaacaaIYaaaaOGaeyOeI0IaaGinaiaadwgadaWgaaWcbaGa am4yaiaadogaaeqaaaqabaaaaaaa@7F25@
  2. The plastic strain evolution is defined by a non-associated plastic potential using the following equation:(6)
    g p = 1 q h 1 κ p ρ ¯ 6 f c + σ ¯ v f c 2 + 3 2 ρ ¯ f c 2 + q h 1 2 κ p m 0 ρ ¯ 6 f c + m g f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGWbaabeaakiabg2da9maacmaabaWaamWaaeaacaaIXaGa eyOeI0IaamyCamaaBaaaleaacaWGObGaaGymaaqabaGcdaqadaqaai abeQ7aRnaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMcaaaGaay5w aiaaw2faamaabmaabaWaaSaaaeaacuaHbpGCgaqeaaqaamaakaaaba GaaGOnaaWcbeaakiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaey4k aSYaaSaaaeaacuaHdpWCgaqeamaaBaaaleaacaWG2baabeaaaOqaai aadAgadaWgaaWcbaGaam4yaaqabaaaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOGaey4kaSYaaOaaaeaadaWcaaqaaiaaiodaae aacaaIYaaaaaWcbeaakmaalaaabaGafqyWdiNbaebaaeaacaWGMbWa aSbaaSqaaiaadogaaeqaaaaaaOGaay5Eaiaaw2haamaaCaaaleqaba GaaGOmaaaakiabgUcaRiaadghadaqhaaWcbaGaamiAaiaaigdaaeaa caaIYaaaaOWaaeWaaeaacqaH6oWAdaWgaaWcbaGaamiCaaqabaaaki aawIcacaGLPaaadaWadaqaamaalaaabaGaamyBamaaBaaaleaacaaI Waaabeaakiqbeg8aYzaaraaabaWaaOaaaeaacaaI2aaaleqaaOGaam OzamaaBaaaleaacaWGJbaabeaaaaGccqGHRaWkdaWcaaqaaiaad2ga daWgaaWcbaGaam4zaaqabaaakeaacaWGMbWaaSbaaSqaaiaadogaae qaaaaaaOGaay5waiaaw2faaaaa@7174@

    With

    m g = A g B g f c exp σ ¯ v q h 2 f t 3 B g f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaWGNbaabeaakiabg2da9iaadgeadaWgaaWcbaGaam4zaaqa baGccaWGcbWaaSbaaSqaaiaadEgaaeqaaOGaamOzamaaBaaaleaaca WGJbaabeaakiGacwgacaGG4bGaaiiCamaalaaabaGafq4WdmNbaeba daWgaaWcbaGaamODaaqabaGccqGHsislcaWGXbWaaSbaaSqaaiaadI gacaaIYaaabeaakmaaliaabaGaamOzamaaBaaaleaacaWG0baabeaa aOqaaiaaiodaaaaabaGaamOqamaaBaaaleaacaWGNbaabeaakiaadA gadaWgaaWcbaGaam4yaaqabaaaaaaa@4F71@

    A g = 3 f t q h 2 f c + m 0 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGNbaabeaakiabg2da9maalaaabaGaaG4maiaadAgadaWg aaWcbaGaamiDaaqabaGccaWGXbWaaSbaaSqaaiaadIgacaaIYaaabe aaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaOGaey4kaSYaaSaa aeaacaWGTbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaaGOmaaaaaaa@4437@

    B g = q h 2 3 1 + f t f c ln A g ln 2 D f 1 ln 3 q h 2 + m 0 2 + ln D f + 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGNbaabeaakiabg2da9maalaaabaWaaeWaaeaadaWccaqa aiaadghadaWgaaWcbaGaamiAaiaaikdaaeqaaaGcbaGaaG4maaaaai aawIcacaGLPaaadaqadaqaaiaaigdacqGHRaWkdaWccaqaaiaadAga daWgaaWcbaGaamiDaaqabaaakeaacaWGMbWaaSbaaSqaaiaadogaae qaaaaaaOGaayjkaiaawMcaaaqaaiGacYgacaGGUbGaamyqamaaBaaa leaacaWGNbaabeaakiabgkHiTiGacYgacaGGUbWaaeWaaeaacaaIYa GaamiramaaBaaaleaacaWGMbaabeaakiabgkHiTiaaigdaaiaawIca caGLPaaacqGHsislciGGSbGaaiOBamaabmaabaGaaG4maiaadghada WgaaWcbaGaamiAaiaaikdaaeqaaOGaey4kaSYaaSGaaeaacaWGTbWa aSbaaSqaaiaaicdaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaacq GHRaWkciGGSbGaaiOBamaabmaabaGaamiramaaBaaaleaacaWGMbaa beaakiabgUcaRiaaigdaaiaawIcacaGLPaaaaaaaaa@6542@

    Where, D f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGMbaabeaaaaa@37D3@ is the dilation parameter.

    This plastic potential is used to compute the evolution of the plastic strain tensor and, thus, the evolution of the internal variable κ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aaS baaSqaaiaadchaaeqaaaaa@38C6@ as follow:(7)
    κ ˙ p = ε ˙ p x h σ ¯ v 2 cos 2 θ ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqOUdSMbai aadaWgaaWcbaGaamiCaaqabaGccqGH9aqpdaWcaaqaamaafmaabaGa fqyTduMbaiaadaWgaaWcbaGaamiCaaqabaaakiaawMa7caGLkWoaae aacaWG4bWaaSbaaSqaaiaadIgaaeqaaOWaaeWaaeaacuaHdpWCgaqe amaaBaaaleaacaWG2baabeaaaOGaayjkaiaawMcaaaaadaqadaqaai aaikdaciGGJbGaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccuaH 4oqCgaqeaaGaayjkaiaawMcaaaaa@4E7F@

    with x h = A h A h B h exp R h σ ¯ v C h if R h σ ¯ v 0 E h exp R h σ ¯ v F h + D h if R h σ ¯ v <0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGObaabeaakiabg2da9maaceaabaqbaeqabiWaaaqaaiaa dgeadaWgaaWcbaGaamiAaaqabaGccqGHsisldaqadaqaaiaadgeada WgaaWcbaGaamiAaaqabaGccqGHsislcaWGcbWaaSbaaSqaaiaadIga aeqaaaGccaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWaaeaada WccaqaaiabgkHiTiaadkfadaWgaaWcbaGaamiAaaqabaGcdaqadaqa aiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaaGccaGLOaGaayzkaa aabaGaam4qamaaBaaaleaacaWGObaabeaaaaaakiaawIcacaGLPaaa aeaacaqGPbGaaeOzaaqaaiaadkfadaWgaaWcbaGaamiAaaqabaGcda qadaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaaGccaGLOaGa ayzkaaGaeyyzImRaaGimaaqaaiaadweadaWgaaWcbaGaamiAaaqaba GcciGGLbGaaiiEaiaacchadaqadaqaamaaliaabaGaamOuamaaBaaa leaacaWGObaabeaakmaabmaabaGafq4WdmNbaebadaWgaaWcbaGaam ODaaqabaaakiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaaiaadIga aeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiaadseadaWgaaWcbaGaam iAaaqabaaakeaacaqGPbGaaeOzaaqaaiaadkfadaWgaaWcbaGaamiA aaqabaGcdaqadaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaa GccaGLOaGaayzkaaGaeyipaWJaaGimaaaaaiaawUhaaaaa@77F6@

    Where, ε ˙ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaacu aH1oqzgaGaamaaBaaaleaacaWGWbaabeaaaOGaayzcSlaawQa7aaaa @3BF5@ is the Euclidian norm of the increment of the plastic strain tensor.

  3. The CDPM2 model considers an unsymmetrical damage evolution between tension and compression. These variables are respectively denoted by ω t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaaaa@38E6@ and ω c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaaaa@38E6@ . The damage variables evolution is triggered by a strain criterion defined by:(8)
    ε e q = ε 0 m 0 2 ρ ¯ 6 f c r cos θ ¯ + σ ¯ v f c + ε 0 2 m 0 2 4 ρ ¯ 6 f c r cos θ ¯ + σ ¯ v f c 2 + 3 ε 0 2 ρ ¯ 2 2 f c 2 ε 0 = f t E MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadwgacaWGXbaabeaakiabg2da9maalaaabaGaeqyTdu2a aSbaaSqaaiaaicdaaeqaaOGaamyBamaaBaaaleaacaaIWaaabeaaaO qaaiaaikdaaaWaaeWaaeaadaWcaaqaaiqbeg8aYzaaraaabaWaaOaa aeaacaaI2aaaleqaaOGaamOzamaaBaaaleaacaWGJbaabeaaaaGcca WGYbWaaeWaaeaaciGGJbGaai4BaiaacohacuaH4oqCgaqeaaGaayjk aiaawMcaaiabgUcaRmaalaaabaGafq4WdmNbaebadaWgaaWcbaGaam ODaaqabaaakeaacaWGMbWaaSbaaSqaaiaadogaaeqaaaaaaOGaayjk aiaawMcaaiabgUcaRmaakaaabaWaaSaaaeaacqaH1oqzdaqhaaWcba GaaGimaaqaaiaaikdaaaGccaWGTbWaa0baaSqaaiaaicdaaeaacaaI YaaaaaGcbaGaaGinaaaadaqadaqaamaalaaabaGafqyWdiNbaebaae aadaGcaaqaaiaaiAdaaSqabaGccaWGMbWaaSbaaSqaaiaadogaaeqa aaaakiaadkhadaqadaqaaiGacogacaGGVbGaai4CaiqbeI7aXzaara aacaGLOaGaayzkaaGaey4kaSYaaSaaaeaacuaHdpWCgaqeamaaBaaa leaacaWG2baabeaaaOqaaiaadAgadaWgaaWcbaGaam4yaaqabaaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSaa aeaacaaIZaGaeqyTdu2aa0baaSqaaiaaicdaaeaacaaIYaaaaOGafq yWdiNbaebadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamOzamaa DaaaleaacaWGJbaabaGaaGOmaaaaaaaabeaakiabgwMiZkabew7aLn aaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaamOzamaaBaaa leaacaWG0baabeaaaOqaaiaadweaaaaaaa@8356@
    When this criterion is reached, the damage history variables to the corresponding loading case (tension or compression) are updated:
    • In Tension:

      κ d t 2 n = κ d t 2 n 1 + max ε e q κ d t n 1 , 0 x s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWG0bGaaGOmaaqaaiaad6gaaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaamizaiaadshacaaIYaaabaGaamOBaiabgkHiTi aaigdaaaGccqGHRaWkdaWcaaqaaiGac2gacaGGHbGaaiiEamaabmaa baGaeqyTdu2aaSbaaSqaaiaadwgacaWGXbaabeaakiabgkHiTiabeQ 7aRnaaDaaaleaacaWGKbGaamiDaaqaaiaad6gacqGHsislcaaIXaaa aOGaaiilaiaaicdaaiaawIcacaGLPaaaaeaacaWG4bWaaSbaaSqaai aadohaaeqaaaaaaaa@5780@ , κ d t 1 n = κ d t 1 n 1 + Δ ε p x s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWG0bGaaGymaaqaaiaad6gaaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaamizaiaadshacaaIXaaabaGaamOBaiabgkHiTi aaigdaaaGccqGHRaWkdaWcaaqaaiabfs5aejabew7aLnaaBaaaleaa caWGWbaabeaaaOqaaiaadIhadaWgaaWcbaGaam4Caaqabaaaaaaa@4ADF@ , and κ d t n = ε e q n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWG0baabaGaamOBaaaakiabg2da9iabew7aLnaa DaaaleaacaWGLbGaamyCaaqaaiaad6gaaaaaaa@405F@

    • In Compression:

      κ d c 2 n = κ d c 2 n 1 + α c max ε e q κ d c n 1 , 0 x s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWGJbGaaGOmaaqaaiaad6gaaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaamizaiaadogacaaIYaaabaGaamOBaiabgkHiTi aaigdaaaGccqGHRaWkdaWcaaqaaiabeg7aHnaaBaaaleaacaWGJbaa beaakiGac2gacaGGHbGaaiiEamaabmaabaGaeqyTdu2aaSbaaSqaai aadwgacaWGXbaabeaakiabgkHiTiabeQ7aRnaaDaaaleaacaWGKbGa am4yaaqaaiaad6gacqGHsislcaaIXaaaaOGaaiilaiaaicdaaiaawI cacaGLPaaaaeaacaWG4bWaaSbaaSqaaiaadohaaeqaaaaaaaa@5A0A@ , κ d c 1 n = κ d c 1 n 1 + α c β c Δ ε p x s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWGJbGaaGymaaqaaiaad6gaaaGccqGH9aqpcqaH 6oWAdaqhaaWcbaGaamizaiaadogacaaIXaaabaGaamOBaiabgkHiTi aaigdaaaGccqGHRaWkcqaHXoqydaWgaaWcbaGaam4yaaqabaGccqaH YoGydaWgaaWcbaGaam4yaaqabaGcdaWcaaqaaiabfs5aejabew7aLn aaBaaaleaacaWGWbaabeaaaOqaaiaadIhadaWgaaWcbaGaam4Caaqa baaaaaaa@5039@ and κ d c n = α c ε e q n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdS2aa0 baaSqaaiaadsgacaWGJbaabaGaamOBaaaakiabg2da9iabeg7aHnaa BaaaleaacaWGJbaabeaakiabew7aLnaaDaaaleaacaWGLbGaamyCaa qaaiaad6gaaaaaaa@430B@

      With,

      α c = i σ p i σ p i + + σ p i σ p 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadogaaeqaaOGaeyypa0ZaaabuaeaadaWcaaqaamaaamaa baGaeq4Wdm3aaSbaaSqaaiaadchacaWGPbaabeaaaOGaayzkJiaawQ YiamaaBaaaleaacqGHsislaeqaaOWaaeWaaeaadaaadaqaaiabeo8a ZnaaBaaaleaacaWGWbGaamyAaaqabaaakiaawMYicaGLQmcadaWgaa WcbaGaey4kaScabeaakiabgUcaRmaaamaabaGaeq4Wdm3aaSbaaSqa aiaadchacaWGPbaabeaaaOGaayzkJiaawQYiamaaBaaaleaacqGHsi slaeqaaaGccaGLOaGaayzkaaaabaWaauWaaeaacaWHdpWaaSbaaSqa aiaahchaaeqaaaGccaGLjWUaayPcSdWaaWbaaSqabeaacaaIYaaaaa aaaeaacaWGPbaabeqdcqGHris5aaaa@5A27@ , β c = f t q h 2 κ p 2 / 3 ρ ¯ 1 + 2 D f 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadogaaeqaaOGaeyypa0ZaaSaaaeaacaWGMbWaaSbaaSqa aiaadshaaeqaaOGaamyCamaaBaaaleaacaWGObGaaGOmaaqabaGcda qadaqaaiabeQ7aRnaaBaaaleaacaWGWbaabeaaaOGaayjkaiaawMca amaakaaabaWaaSGbaeaacaaIYaaabaGaaG4maaaaaSqabaaakeaacu aHbpGCgaqeamaakaaabaGaaGymaiabgUcaRiaaikdacaWGebWaa0ba aSqaaiaadAgaaeaacaaIYaaaaaqabaaaaaaa@4BB0@ , x s = 1 + A s 1 R s B S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGZbaabeaakiabg2da9iaaigdacqGHRaWkdaqadaqaaiaa dgeadaWgaaWcbaGaam4CaaqabaGccqGHsislcaaIXaaacaGLOaGaay zkaaGaamOuamaaDaaaleaacaWGZbaabaGaamOqaiaadofaaaaaaa@4381@ with R s = 6 σ ¯ v ρ ¯ if σ ¯ v 0 0 if σ ¯ v > 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaBa aaleaacaWGZbaabeaakiabg2da9maaceaabaqbaeqabiWaaaqaaiab gkHiTmaalaaabaWaaOaaaeaacaaI2aaaleqaaOGafq4WdmNbaebada WgaaWcbaGaamODaaqabaaakeaacuaHbpGCgaqeaaaaaeaacaqGPbGa aeOzaaqaaiqbeo8aZzaaraWaaSbaaSqaaiaadAhaaeqaaOGaeyizIm QaaGimaaqaaiaaicdaaeaacaqGPbGaaeOzaaqaaiqbeo8aZzaaraWa aSbaaSqaaiaadAhaaeqaaOGaeyOpa4JaaGimaaaaaiaawUhaaaaa@4F9E@

    The inelastic strains can be obtained from damage history variable using the following equations:

    ε i n e l t = κ d t 1 + ω t κ d t 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWG0baaaOGaeyyp a0JaeqOUdS2aaSbaaSqaaiaadsgacaWG0bGaaGymaaqabaGccqGHRa WkcqaHjpWDdaWgaaWcbaGaamiDaaqabaGccqaH6oWAdaWgaaWcbaGa amizaiaadshacaaIYaaabeaaaaa@4A6C@ and ε i n e l c = κ d c 1 + ω c κ d c 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0 baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWGJbaaaOGaeyyp a0JaeqOUdS2aaSbaaSqaaiaadsgacaWGJbGaaGymaaqabaGccqGHRa WkcqaHjpWDdaWgaaWcbaGaam4yaaqabaGccqaH6oWAdaWgaaWcbaGa amizaiaadogacaaIYaaabeaaaaa@4A28@

    The damage history variable finally enables to update the corresponding damage variables.

    Regarding tensile damage, three different evolution shapes are available depending on the DTYPE parameter value:
    • DTYPE = 1: Linear damage where f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ is the strength limit at the beginning of damage, and w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ is the failure displacement for which the stiffness becomes null (Figure 3).(9)
      ω t = E κ d t w f f t w f + f t κ d t 1 h E κ d t w f f t h κ d t 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaOGaeyypa0ZaaSaaaeaacaWGfbGaeqOUdS2a aSbaaSqaaiaadsgacaWG0baabeaakiaadEhadaWgaaWcbaGaamOzaa qabaGccqGHsislcaWGMbWaaSbaaSqaaiaadshaaeqaaOGaam4Damaa BaaaleaacaWGMbaabeaakiabgUcaRiaadAgadaWgaaWcbaGaamiDaa qabaGccqaH6oWAdaWgaaWcbaGaamizaiaadshacaaIXaaabeaakiaa dIgaaeaacaWGfbGaeqOUdS2aaSbaaSqaaiaadsgacaWG0baabeaaki aadEhadaWgaaWcbaGaamOzaaqabaGccqGHsislcaWGMbWaaSbaaSqa aiaadshaaeqaaOGaamiAaiabeQ7aRnaaBaaaleaacaWGKbGaamiDai aaikdaaeqaaaaaaaa@5D69@


      Figure 3. Uniaxial tension test on a single unit element using linear damage evolution . with f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =3.5 MPa and w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =0.002 mm
    • DTYPE = 2: Bilinear damage which is very similar to the linear damage apart from the use of the couple of values w f 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaa@38C1@ and f t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaa@38C1@ which define the coordinates of the points where damage evolution changes its slope (Figure 4).(10)
      ω t = E κ d t w f 1 f t w f 1 f t 1 f t κ d t 1 h E κ d t w f 1 + f t 1 f t h κ d t 2 if h ε i n e l t > 0 and h ε i n e l t < w f 1 E κ d t w f w f 1 f t 1 w f w f 1 + f t 1 κ d t 1 h f t 1 w f 1 E κ d t w f w f 1 f t 1 h κ d t 2 if h ε i n e l t > w f 1 and h ε i n e l t < w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGadaaabaWa aSaaaeaacaWGfbGaeqOUdS2aaSbaaSqaaiaadsgacaWG0baabeaaki aadEhadaWgaaWcbaGaamOzaiaaigdaaeqaaOGaeyOeI0IaamOzamaa BaaaleaacaWG0baabeaakiaadEhadaWgaaWcbaGaamOzaiaaigdaae qaaOGaeyOeI0YaaeWaaeaacaWGMbWaaSbaaSqaaiaadshacaaIXaaa beaakiabgkHiTiaadAgadaWgaaWcbaGaamiDaaqabaaakiaawIcaca GLPaaacqaH6oWAdaWgaaWcbaGaamizaiaadshacaaIXaaabeaakiaa dIgaaeaacaWGfbGaeqOUdS2aaSbaaSqaaiaadsgacaWG0baabeaaki aadEhadaWgaaWcbaGaamOzaiaaigdaaeqaaOGaey4kaSYaaeWaaeaa caWGMbWaaSbaaSqaaiaadshacaaIXaaabeaakiabgkHiTiaadAgada WgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaacaWGObGaeqOUdS2a aSbaaSqaaiaadsgacaWG0bGaaGOmaaqabaaaaaGcbaGaaeyAaiaabA gaaeaafaqabeqadaaabaGaamiAaiabew7aLnaaDaaaleaacaWGPbGa amOBaiaadwgacaWGSbaabaGaamiDaaaakiabg6da+iaaicdaaeaaca qGHbGaaeOBaiaabsgaaeaacaWGObGaeqyTdu2aa0baaSqaaiaadMga caWGUbGaamyzaiaadYgaaeaacaWG0baaaOGaeyipaWJaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaaGcbaWaaSaaaeaacaWGfbGaeqOU dS2aaSbaaSqaaiaadsgacaWG0baabeaakmaabmaabaGaam4DamaaBa aaleaacaWGMbaabeaakiabgkHiTiaadEhadaWgaaWcbaGaamOzaiaa igdaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaamOzamaaBaaaleaaca WG0bGaaGymaaqabaGcdaqadaqaaiaadEhadaWgaaWcbaGaamOzaaqa baGccqGHsislcaWG3bWaaSbaaSqaaiaadAgacaaIXaaabeaaaOGaay jkaiaawMcaaiabgUcaRiaadAgadaWgaaWcbaGaamiDaiaaigdaaeqa aOGaeqOUdS2aaSbaaSqaaiaadsgacaWG0bGaaGymaaqabaGccaWGOb GaeyOeI0IaamOzamaaBaaaleaacaWG0bGaaGymaaqabaGccaWG3bWa aSbaaSqaaiaadAgacaaIXaaabeaaaOqaaiaadweacqaH6oWAdaWgaa WcbaGaamizaiaadshaaeqaaOWaaeWaaeaacaWG3bWaaSbaaSqaaiaa dAgaaeqaaOGaeyOeI0Iaam4DamaaBaaaleaacaWGMbGaaGymaaqaba aakiaawIcacaGLPaaacqGHsislcaWGMbWaaSbaaSqaaiaadshacaaI XaaabeaakiaadIgacqaH6oWAdaWgaaWcbaGaamizaiaadshacaaIYa aabeaaaaaakeaacaqGPbGaaeOzaaqaauaabeqabmaaaeaacaWGObGa eqyTdu2aa0baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWG0b aaaOGaeyOpa4Jaam4DamaaBaaaleaacaWGMbGaaGymaaqabaaakeaa caqGHbGaaeOBaiaabsgaaeaacaWGObGaeqyTdu2aa0baaSqaaiaadM gacaWGUbGaamyzaiaadYgaaeaacaWG0baaaOGaeyipaWJaam4Damaa BaaaleaacaWGMbaabeaaaaaaaaGccaGL7baaaaa@DB79@


      Figure 4. Uniaxial tension test on a single unit element using bilinear damage evolution . with f t 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaa@38C1@ =3.5 MPa , f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =1.5 MPa, w f 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbGaaGymaaqabaaaaa@38C1@ =0.00075 mm and w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =0.002 mm
    • DTYPE = 3: Exponential damage where the displacement threshold w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ corresponds to the meeting point between uniaxial strain axis, and tangent curve to the beginning of stress softening (Figure 5).(11)
      ω t = 1 exp h ε i n e l t w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadshaaeqaaOGaeyypa0JaaGymaiabgkHiTiGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGObGaeqyTdu2aa0 baaSqaaiaadMgacaWGUbGaamyzaiaadYgaaeaacaWG0baaaaGcbaGa am4DamaaBaaaleaacaWGMbaabeaaaaaakiaawIcacaGLPaaaaaa@4A9B@


      Figure 5. Uniaxial tension test on a single unit element using exponential damage evolution . with f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =3.5 MPa and w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWG0baabeaaaaa@3803@ =0.002 mm
    In these different equations, h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@ is a parameter that can be used to avoid mesh size dependency. When IREG = 1, no regularization method is used, and h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@ is set to 1. In that case, the critical value w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbaabeaaaaa@3806@ becomes a critical strain with no dimension. Otherwise, if IREG = 2, the Hillerborg’s regularization method 2 (also called Crack Brand method 3) is used, and h MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E1@ equals the initial element size. Then, the critical value w f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaWGMbaabeaaaaa@3806@ becomes a critical displacement homogeneous to a displacement. Hillerborg’s regularization method is to ensure that the tensile fracture energy denoted G f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaDa aaleaacaWGMbaabaGaamiDaaaaaaa@38D0@ remains constant no matter what element size is used (Figure 6).


    Figure 6. Uniaxial tension test with bilinear damage on two different mesh sizes with IREQ = 0 (left); IREQ = 1 (right)
    Regarding compression damage, only the exponential evolution shape is available without any regularization method (Figure 7). Mesh size dependency is assumed to be less sensitive.(12)
    ω c = 1 exp ε i n e l c e f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadogaaeqaaOGaeyypa0JaaGymaiabgkHiTiGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacqaH1oqzdaqhaaWcba GaamyAaiaad6gacaWGLbGaamiBaaqaaiaadogaaaaakeaacaWGLbWa aSbaaSqaaiaadAgacaWGJbaabeaaaaaakiaawIcacaGLPaaaaaa@4A62@


    Figure 7. Uniaxial compression test on a single unit element . with e f c = 5 × 10 ( 4 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbWdamaaBaaaleaapeGaamOzaiaadogaa8aabeaak8qacqGH 9aqpcaaI1aGaaGjbV=aacaqGxdGaaGjbV=qacaaIXaGaaGima8aada ahaaWcbeqaa8qacaGGOaGaeyOeI0IaaGinaiaacMcaaaaaaa@4461@
    The effect of damage on stress computation will depend on the DFLAG parameter value:
    • DFLAG = 1: Non-symmetric softening which considers the crack closure effect when switching from tension to compression, recovering the initial stiffness. On the opposite, a switch from tension to compression re-opens the already existing cracks. (Figure 8).(13)
      σ = 1 ω t σ e f f t + 1 ω c σ e f f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Wdiabg2 da9maabmaabaGaaGymaiabgkHiTiabeM8a3naaBaaaleaacaWG0baa beaaaOGaayjkaiaawMcaaiaaho8adaqhaaWcbaGaamyzaiaadAgaca WGMbaabaGaamiDaaaakiabgUcaRmaabmaabaGaaGymaiabgkHiTiab eM8a3naaBaaaleaacaWGJbaabeaaaOGaayjkaiaawMcaaiaaho8ada qhaaWcbaGaamyzaiaadAgacaWGMbaabaGaam4yaaaaaaa@4FD6@
      Where, σ e f f t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa aaleaacaWGLbGaamOzaiaadAgaaeaacaWG0baaaaaa@3B28@ and σ e f f c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4WdmaaDa aaleaacaWGLbGaamOzaiaadAgaaeaacaWG0baaaaaa@3B28@ are respectively the tension and compression part of the undamaged (effective) stress tensor.


      Figure 8. Loading/unloading uniaxial test with non-symmetrical damage softening
    • DFLAG = 2: Isotropic softening that considers only the effect of tensile damage in both tension and compression. Then crack closure is not considered. No changes of stiffness are observed when switching from tension to compression or the opposite (Figure 9). Tensile damage is also less likely to evolve in compression.(14)
      σ = 1 ω t σ e f f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Wdiabg2 da9maabmaabaGaaGymaiabgkHiTiabeM8a3naaBaaaleaacaWG0baa beaaaOGaayjkaiaawMcaaiaaho8adaWgaaWcbaGaamyzaiaadAgaca WGMbaabeaaaaa@42B0@


      Figure 9. Loading/unloading uniaxial test with isotropic damage softening
    • DFLAG = 3: Multiplicative softening where the effect of both tension and compression damage are considered and cumulated on the behavior (Figure 10).(15)
      σ = 1 1 ω t 1 ω c σ e f f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4Wdiabg2 da9maabmaabaGaaGymaiabgkHiTmaabmaabaGaaGymaiabgkHiTiab eM8a3naaBaaaleaacaWG0baabeaaaOGaayjkaiaawMcaamaabmaaba GaaGymaiabgkHiTiabeM8a3naaBaaaleaacaWGJbaabeaaaOGaayjk aiaawMcaaaGaayjkaiaawMcaaiaaho8adaWgaaWcbaGaamyzaiaadA gacaWGMbaabeaaaaa@4BFD@


      Figure 10. Loading/unloading uniaxial test with multiplicative damage softening
  4. The last phenomena considered by CDPM2 model is the strain rate dependency. At a high strain rate, the concrete is more likely to have a larger tension or compression strength limit. This is introduced by the following equations:

    f t r a t e = α r a t e f t MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWG0baabaGaamOCaiaadggacaWG0bGaamyzaaaakiabg2da 9iabeg7aHnaaBaaaleaacaWGYbGaamyyaiaadshacaWGLbaabeaaki aadAgadaWgaaWcbaGaamiDaaqabaaaaa@447A@ , f c r a t e = α r a t e f c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWGJbaabaGaamOCaiaadggacaWG0bGaamyzaaaakiabg2da 9iabeg7aHnaaBaaaleaacaWGYbGaamyyaiaadshacaWGLbaabeaaki aadAgadaWgaaWcbaGaam4yaaqabaaaaa@4458@ and f t 1 r a t e = α r a t e f t 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaDa aaleaacaWG0bGaaGymaaqaaiaadkhacaWGHbGaamiDaiaadwgaaaGc cqGH9aqpcqaHXoqydaWgaaWcbaGaamOCaiaadggacaWG0bGaamyzaa qabaGccaWGMbWaaSbaaSqaaiaadshacaaIXaaabeaaaaa@45F0@

    The dynamic increase factor (DIF) α r a t e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeqaaaaa@3B7F@ is computed with:(16)
    α r a t e = 1 α c α r a t e t + α c α r a t e c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeqaaOGaeyypa0ZaaeWa aeaacaaIXaGaeyOeI0IaeqySde2aaSbaaSqaaiaadogaaeqaaaGcca GLOaGaayzkaaGaeqySde2aa0baaSqaaiaadkhacaWGHbGaamiDaiaa dwgaaeaacaWG0baaaOGaey4kaSIaeqySde2aaSbaaSqaaiaadogaae qaaOGaeqySde2aa0baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeaa caWGJbaaaaaa@531F@

    Where, α c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadogaaeqaaaaa@38A7@ is the compression factor defined above in damage history variables equations in Comment 3.

    There is then a different strain rate dependency between tension and compression as concrete is more sensitive to strain rate effect in tension than in compression. The two dynamic increased factor for both tension and compression are computed with:

    α r a t e t = 1 for ε ˙ max 30 × 10 6 s 1 ε ˙ ε ˙ t 0 δ s for 30 × 10 6 s 1 < ε ˙ max 1 s 1 β s ε ˙ ε ˙ t 0 1 3 for 1 s 1 ε ˙ max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeaacaWG0baaaOGaeyyp a0ZaaiqaaeaafaqabeWadaaabaGaaGymaaqaaiaabAgacaqGVbGaae OCaaqaaiqbew7aLzaacaWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa baGccqGHKjYOcaaIZaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaS qabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaaleqabaGaeyOeI0Ia aGymaaaaaOqaamaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew 7aLzaacaWaaSbaaSqaaiaadshacaaIWaaabeaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiabes7aKnaaBaaameaacaWGZbaabeaaaaaake aacaqGMbGaae4BaiaabkhaaeaacaaIZaGaaGimaiabgEna0kaaigda caaIWaWaaWbaaSqabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaale qabaGaeyOeI0IaaGymaaaakiabgYda8iqbew7aLzaacaWaaSbaaSqa aiGac2gacaGGHbGaaiiEaaqabaGccqGHKjYOcaaIXaGaae4CamaaCa aaleqabaGaeyOeI0IaaGymaaaaaOqaaiabek7aInaaBaaaleaacaWG ZbaabeaakmaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew7aLz aacaWaaSbaaSqaaiaadshacaaIWaaabeaaaaaakiaawIcacaGLPaaa daahaaWcbeqaamaaliaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaae Ozaiaab+gacaqGYbaabaGaaGymaiaabohadaahaaWcbeqaaiabgkHi TiaaigdaaaGccqGHKjYOcuaH1oqzgaGaamaaBaaaleaaciGGTbGaai yyaiaacIhaaeqaaaaaaOGaay5Eaaaaaa@8C22@ with δ s = 1 1 + 8 f c f c 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS baaSqaaiaadohaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGym aiabgUcaRiaaiIdadaWccaqaaiaadAgadaWgaaWcbaGaam4yaaqaba aakeaacaWGMbWaaSbaaSqaaiaadogacaaIWaaabeaaaaaaaaaa@41CB@ , log β s = 6 δ s 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaeqOSdi2aaSbaaSqaaiaadohaaeqaaOGaeyypa0JaaGOn aiabes7aKnaaBaaaleaacaWGZbaabeaakiabgkHiTiaaikdaaaa@41D5@

    α r a t e c = 1 for ε ˙ max 30 × 10 6 s 1 ε ˙ ε ˙ c 0 1.026 α s for 30 × 10 6 s 1 < ε ˙ max 30 s 1 γ s ε ˙ ε ˙ c 0 1 3 for 30s 1 ε ˙ max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aa0 baaSqaaiaadkhacaWGHbGaamiDaiaadwgaaeaacaWGJbaaaOGaeyyp a0ZaaiqaaeaafaqabeWadaaabaGaaGymaaqaaiaabAgacaqGVbGaae OCaaqaaiqbew7aLzaacaWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqa baGccqGHKjYOcaaIZaGaaGimaiabgEna0kaaigdacaaIWaWaaWbaaS qabeaacqGHsislcaaI2aaaaOGaae4CamaaCaaaleqabaGaeyOeI0Ia aGymaaaaaOqaamaabmaabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew 7aLzaacaWaaSbaaSqaaiaadogacaaIWaaabeaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaigdacaGGUaGaaGimaiaaikdacaaI2aGaeq ySde2aaSbaaWqaaiaadohaaeqaaaaaaOqaaiaabAgacaqGVbGaaeOC aaqaaiaaiodacaaIWaGaey41aqRaaGymaiaaicdadaahaaWcbeqaai abgkHiTiaaiAdaaaGccaqGZbWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaeyipaWJafqyTduMbaiaadaWgaaWcbaGaciyBaiaacggacaGG4b aabeaakiabgsMiJkaaiodacaaIWaGaae4CamaaCaaaleqabaGaeyOe I0IaaGymaaaaaOqaaiabeo7aNnaaBaaaleaacaWGZbaabeaakmaabm aabaWaaSaaaeaacuaH1oqzgaGaaaqaaiqbew7aLzaacaWaaSbaaSqa aiaadogacaaIWaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaam aaliaabaGaaGymaaqaaiaaiodaaaaaaaGcbaGaaeOzaiaab+gacaqG YbaabaGaae4maiaabcdacaqGZbWaaWbaaSqabeaacqGHsislcaaIXa aaaOGaeyizImQafqyTduMbaiaadaWgaaWcbaGaciyBaiaacggacaGG 4baabeaaaaaakiaawUhaaaaa@90FC@ with α s = 1 5 + 9 f c f c 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadohaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGyn aiabgUcaRiaaiMdadaWccaqaaiaadAgadaWgaaWcbaGaam4yaaqaba aakeaacaWGMbWaaSbaaSqaaiaadogacaaIWaaabeaaaaaaaaaa@41CA@ , log γ s = 6.56 α s 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaeq4SdC2aaSbaaSqaaiaadohaaeqaaOGaeyypa0JaaGOn aiaac6cacaaI1aGaaGOnaiabeg7aHnaaBaaaleaacaWGZbaabeaaki abgkHiTiaaikdaaaa@4406@

    The equivalent deviatoric strain rate ε ˙ is used to compute the DIF in the equations above.

    No parameters need to be identified for strain rate effect. You only need to set the flag IRATE to 2. Figure 11 shows the expected tendency of strain rate effect on the CDPM2 behavior. By increasing the strength limits in tension/compression, the dissipated energy during failure is also affected which is often observed experimentally.
    Figure 11. Uniaxial tests in tension/compression with strain rate dependency (IRATE = 1)


  5. Default value of eccentricity can be obtained with:

    ε i = f t 1.16 f c 2 f c 2 1.16 f c f c 2 f t 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacaWGMbWaaSbaaSqa aiaadshaaeqaaOWaaeWaaeaadaqadaqaaiaaigdacaGGUaGaaGymai aaiAdacaWGMbWaaSbaaSqaaiaadogaaeqaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamOzamaaDaaaleaacaWGJb aabaGaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaaigdacaGGUaGaaGym aiaaiAdacaWGMbWaaSbaaSqaaiaadogaaeqaaOWaaeWaaeaacaWGMb Waa0baaSqaaiaadogaaeaacaaIYaaaaOGaeyOeI0IaamOzamaaDaaa leaacaWG0baabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaaa@559B@ and e c c = 1 + ε i 2 ε i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzamaaBa aaleaacaWGJbGaam4yaaqabaGccqGH9aqpdaWcaaqaaiaaigdacqGH RaWkcqaH1oqzdaWgaaWcbaGaamyAaaqabaaakeaacaaIYaGaeyOeI0 IaeqyTdu2aaSbaaSqaaiaadMgaaeqaaaaaaaa@42CC@

  6. Global damage variable can be output using /ANIM/BRICK/DAMG or /HED/SOLID/DAMG.
1 Peter Grassl, Dimitrios Xenos, Ulrika Nyström, Rasmus Rempling, Kent Gylltoft, CDPM2: A damage-plasticity approach to modelling the failure of concrete, International Journal of Solids and Structures, Volume 50, Issue 24, 2013, Pages 3805-3816, ISSN 0020-7683
2 A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, Volume 6, Issue 6, 1976, Pages 773-781, ISSN 0008-8846
3 Bažant, Z.P., Oh, B.H. Crack band theory for fracture of concrete. Mat. Constr. 16, 155–177 (1983)