/FUNCT_SMOOTH
Block Format Keyword Defines a smoothstep analytic function to be used with loads.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/FUNCT_SMOOTH/fct_ID  
fct_title  
Ascalex  Fscaley  Ashiftx  Fshifty  
X_{1}  Y_{1}  
X_{2}  Y_{2}  
etc.  etc.  
X_{N}  Y_{N} 
Definition
Field  Contents  SI Unit Example 

fct_ID  Function
identifier. (Integer, maximum 10 digits) 

fct_title  Function
title. (Character, maximum 100 characters) 

Ascalex  Abscissa scale
factor. Default = 1.0 (Real) 

Fscaley  Ordinate scale
factor. Default = 1.0 (Real) 

Ashiftx  Abscissa shift
value. Default = 0.0 (Real) 

Fshifty  Ordinate shift
value. Default = 0.0 (Real) 

X_{1}  First abscissa for the
function definition. Default = 0 (Real) 

Y_{1}  First ordinate for the
function definition. Default = 0 (Real) 

X_{2}  Second abscissa for
the function definition. (Real) 

Y_{2}  Second ordinate for
the function definition. (Real) 

X_{N}  (Optional) N^{th} abscissa point.  
Y_{N}  (Optional) N^{th} ordinate point. 
Example
#RADIOSS STARTER
#12345678910
/FUNCT_SMOOTH/1
Displacement
#12345678910
# Ascalex Fscaley Ashiftx Fshifty
# X Y
0 0
.2 60
.4 20
.5 70
.6 70
.8 0.0
#12345678910
#ENDDATA
Comments
 Points 1 and 2 are required.
 A function and a table cannot share the same identifier.
 This function can be used
with these options:
/IMPDISP, /IMPVEL, /IMPACC, /IMPDISP/FGEO, /IMPVEL/FGEO, /IMPVEL/LAGMUL, /PLOAD, /CLOAD, /GRAV, /IMPTEMP, and /IMPFLUX
 For an abscissa smaller than X_{1}, the ordinate value is Y_{1}.
 For an abscissa larger than X_{N}, the ordinate value is Y_{N}.
 The function is scaled
first and shifted afterwards, as:$${X}_{new}={X}_{old}\cdot Ascal{e}_{x}+Ashif{t}_{x}$$$${Y}_{new}={Y}_{old}\cdot Fscal{e}_{y}+Fshif{t}_{y}$$
Where, ${X}_{old}$ and ${Y}_{old}$ are values from the function.
 The ordinate is calculated for each time step which results in a smooth function.
 The function is
calculated for using two consecutive input data points
$i$
and
$i+1$
as:
$\begin{array}{l}\text{If}x\le {X}_{1}\text{then}y={Y}_{1}\\ {\text{IfX}}_{1}x{X}_{N}\text{then}y={y}_{i}+\left({y}_{i+1}{y}_{i}\right){d}^{3}\left(1015d+6{d}^{2}\right)\\ \text{where,}d=\frac{x{x}_{i}}{{x}_{i+1}{x}_{i}}\\ \text{If}x\ge {X}_{N}\text{then}y={Y}_{N}\end{array}$