/TABLE/0
Block Format Keyword Defines a table with up to four dimensions using data points.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/TABLE/0/table_ID  
table_title  
dimension  n_{1}  n_{2}  n_{3}  n_{4} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

X_{1}  X_{2}  etc  
etc  
etc  X_{n1} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

Y_{1}  Y_{2}  etc  
etc  
etc  Y_{n2} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

Z_{1}  Z_{2}  etc  
etc  
etc  Z_{n3} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

W_{1}  W_{2}  etc  
etc  
etc  W_{n4} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

T_{1}  T_{2}  etc  
etc  
etc  
${T}_{k}$ 
Definition
Field  Contents  SI Unit Example 

table_ID  Table
identifier. (Integer, maximum 10 digits) 

table_title  Table
title. (Character, maximum 100 characters) 

dimension  Total number of
entries. (Integer ≤ 4) 

n_{1}, ..., n_{dimension}  Number of values for
entry n_{1}, ...,
n_{dimension}. (Integer) 

X_{i}  i^{th} value
of first entry (1 ≤ i ≤ n_{1}). (Real) 

Y_{j}  i^{th} value
of second entry (1 ≤ i ≤ n_{2}). (Real) 

Z_{k}  i^{th} value
of third entry (1 ≤ i ≤ n_{3}). (Real) 

W_{l}  i^{th} value
of fourth entry (1 ≤ i ≤ n_{4}). (Real) 

T_{k}  k^{th} value
of the table (
$1\le k\le {n}_{1}\cdot {n}_{1}\cdot \cdot \cdot {n}_{dimension}$
). (Real) 
Example
 $T(X=1.1)=4$
 $T(X=1.2)=5$
 $T(X=1.3)=6$
 $T(X=1.4)=7$
$T(X=1.1,Y=2.1)=9$  $T(X=1.1,Y=2.2)=13$ 
$T(X=1.2,Y=2.1)=10$  $T(X=1.2,Y=2.2)=14$ 
$T(X=1.3,Y=2.1)=11$  $T(X=1.3,Y=2.2)=15$ 
$T(X=1.4,Y=2.1)=12$  $T(X=1.4,Y=2.2)=16$ 
#12345678910
/TABLE/0/1003
table type 0 with dimension 1
#dimension n1 n2 n3 n4
1 4 0 0 0
# X
1.1 1.2 1.3 1.4
# T
4 5 6 7
#12345678910
/TABLE/0/1004
table type 0 with dimension 2
#dimension n1 n2 n3 n4
2 4 4 0 0
# X
1.1 1.2 1.3 1.4
# Y
2.1 2.2 2.3 2.4
# T
9 10 11 12 13
14 15 16 17 18
19 20 21 22 23
24
#12345678910
#enddata
Comments
 A function and a table cannot share the same identifier.
 The full grid is input. N_{1}, ... N_{dimension} is mandatory. If the dimension =1, N_{1}, is mandatory; if the dimension=2, N_{1} and N_{2} are mandatory, and so on.
 The dimension of a table is the same as the number of input entries.
 The input values of the entry must
be strictly increasing,
let
${X}_{1}<{X}_{2}<\cdot \cdot \cdot <{X}_{n}$
${Y}_{1}<{Y}_{2}<\cdot \cdot \cdot <{Y}_{n}$
${Z}_{1}<{Z}_{2}<\cdot \cdot \cdot <{Z}_{n}$
${W}_{1}<{W}_{2}<\cdot \cdot \cdot <{W}_{n}$
 The values of the table must be
given in the following order:
 first entry varies first
 second entry varies as the second one
 dimension entry varies as the last one
As an example, let a 3dimension table and let the four entries be denoted X, Y, and Z: the values of the table must be given in the following order:
$T({X}_{1},{Y}_{1},{Z}_{1})$ , $T({X}_{2},{Y}_{1},{Z}_{1})$ , …, $T({X}_{n1},{Y}_{1},{Z}_{1})$
$T({X}_{1},{Y}_{2},{Z}_{1})$ , $T({X}_{2},{Y}_{2},{Z}_{1})$ , …, $T({X}_{n1},{Y}_{n2},{Z}_{1})$
$T({X}_{1},{Y}_{1},{Z}_{2})$ , $T({X}_{2},{Y}_{1},{Z}_{2})$ , …, $T({X}_{n1},{Y}_{1},{Z}_{2})$
$T({X}_{1},{Y}_{2},{Z}_{2})$ , …, $T({X}_{n1},{Y}_{2},{Z}_{2})$ , …, $T({X}_{n1},{Y}_{n2},{Z}_{2})$ , …., $T({X}_{n1},{Y}_{n2},{Z}_{n3})$