Pin Fin Tube

Description

A duct flow correlation to be used with tubes that have pin fins on a surface. Not all surfaces of the tube wall need to have the pin fins. These pin-fin HTC correlations can be used with the advanced tube, incompressible tube, or can be used with convectors.
Figure 1. Using Pin-Fin Correlations


Figure 2. Pin-Fin Nomenclature


Type
Mixed Laminar-Turbulent Duct Nu
Subtype
Pin-Fin Tube
Table 1. Inputs List for Convector (similar inputs for tubes)
Index UI Name (.flo label) Description
1 Pin Fin Correlation

(PIN_FIN_CORL)

The HTC equation to use.
  • 1: User defined
  • 2: Metzger
  • 3: Corbett
2 Convector Area Option

(CONV_AREA_OPT)

Option to add the calculated pin-fin area to the convector area.
  • 1: Add Pin Area to Convector Area
  • 2: Do not Modify Convector Area
3 Flow Element

(FLOW_ELM)

ID for flow element that will be used for mass flow rate and other correlation inputs.

If AUTO, the correlation must be applied to a convector that is connected to a fluid chamber that has only one flow element entering this chamber. The ID of this flow element will be used. The element can be of almost any type, although some types will not have geometric inputs that can be obtained with the AUTO option of the remaining inputs.

4 Number Pins Flow Dir

(NUM_FLOW)

Number of pins in the direction of flow.

If AUTO, use input from the FLOW_ELM.

5 Number Pins Cross Dir

(NUM_CROSS)

Number of pins in the direction perpendicular to the direction of flow.

If AUTO, use input from the FLOW_ELM.

6 Number Pins Total

(NUM_TOTAL)

Total number of pins. This will be used to calculate the pin surface area.

If AUTO, use input from the FLOW_ELM.

7 Number of Pins Upstream

(NUM_UPSTRM)

Number of pins in the direction of the flow upstream of this current region. This will be used for the pin array inlet effects.

If AUTO, use input from the FLOW_ELM.

8 Hydraulic Diameter

(HYD_DIA)

Passage hydraulic diameter.

If AUTO, use input from the FLOW_ELM.

9 Flow Area

(FLOW_AREA)

Passage flow area without the pin blockage.

An area that includes the pin blockage will be calculated using the pin dimensions.

If AUTO, use input from the FLOW_ELM.

If the area from the flow element is not available, the passage will be assumed circular, and the hydraulic diameter will be used to calculate the area.

10 Pin Diameter

(PIN_DIA)

The diameter of the pins.

If AUTO, use input from the FLOW_ELM.

11 Pin Height

(PIN_HGT)

The height of the pins.

If AUTO, use input from the FLOW_ELM.

12 Pin Spacing Flow Dir

(SPC_FLOW)

The distance between the pin centers in the flow direction.

If AUTO, use input from the FLOW_ELM.

13 Pin Spacing Cross Dir

(SPC_CROSS)

The distance between the pin centers in the direction perpendicular to the direction of flow.

If AUTO, use input from the FLOW_ELM.

14 Pins Extend Across Passage

(PINS_EXTEND)

  • 1: Yes, the pins extend from one side of the passage to the other.
  • 2: No, pin height is less than the passage height.

If AUTO, use input from the FLOW_ELM.

15 Wall Roughness

(WALL_RGH)

The wall roughness.

If AUTO, use input from the FLOW_ELM.

16 Inlet Row Effects

(INLET_EFF)

Option for heat transfer inlet effects.
  • 1: No inlet effects.
  • 2: Metzger Row effects.
17 Laminar-to-Transition Re

(RE_LAM)

Reynolds number where the Laminar regime of flow ends and the Transitional regime starts.

If AUTO, RE_LAM = 900.

18 Transition-to-Turbulent Re

(RE_TURB)

Reynolds number where the Transitional regime of flow ends and the fully Turbulent regime starts.

If AUTO, RE_TURB = 1100.

19 HTC Multiplier

(HTC_MULT)

A constant multiplier to scale the value of the heat transfer coefficient obtained from the correlation.
20 Primary Coefficient

(PRIM_COEF)

Coefficient to use in the Nusselt number equation when PIN_FIN_CORL = User Defined.
21 Spacing Flow Dir Exponent

(X_O_DP_EXP)

Exponent to use in the Nusselt number equation when PIN_FIN_CORL = User Defined.
22 Cross Flow Dir Exponent

(S_O_DP_EXP)

Exponent to use in the Nusselt number equation when PIN_FIN_CORL = User Defined.
23 Reynolds Number Exponent

(RE_DP_EXP)

Exponent to use in the Nusselt number equation when PIN_FIN_CORL = User Defined.
24 Rough Ratio Coefficient

(RGH_RAT_COEF)

Coefficient to use in the Nusselt number equation when PIN_FIN_CORL = User Defined.
25 Rough Ratio Exponent

(RGH_RAT_EXP)

Exponent to use in the Nusselt number equation when PIN_FIN_CORL = User Defined.
26 Free Convection Nu

(FREE_HTC)

The equation to use for free convection blending.
  1. None (do not calculate free convection HTC).
  2. McAdams Vertical Plate.
  3. Horizontal Plate.
  4. Churchill-Chu Horizontal Cylinder.

If AUTO, FREE_HTC = 2.

27 Free Mixing Sign

(FREE_ASSIST)

The sign of the free and forced HTC blending.
  1. Assist (positive).
  2. Oppose (negative).

If AUTO, FREE_ASSIST = 1.

28 Free Length Scale

(FREE_LEN)

The length scale for the free convection HTC calculation.

If AUTO, FREE_LEN = LENGTH.

29 Horizontal Free Surface Dir

(FREE_SURF_DIR)

Direction of the horizontal plate that is used if FREE_HTC=3.
  1. Up or radially out.
  2. Down or radially in.

Formulation

This correlation has two Nusselt number equations and a user-defined option. The correlations and suggested use cases are described below.
  1. User defined (ref. 1).

    This correlation uses user-defined coefficients and exponents, so it can be used with test data from other pin-fin geometries.

    N u = P R I M _ C O E F * R G H _ T E R M *   S P C _ F L O W P I N _ D I A X _ O _ D P _ E X P *   S P C _ C R O S S P I N _ D I A S _ O _ D P _ E X P * R e R E _ D P _ E X P MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDaiabg2da9iaadcfacaWGsbGaamysaiaad2eacaGG FbGaam4qaiaad+eacaWGfbGaamOraiaacQcacaWGsbGaam4raiaadI eacaGGFbGaamivaiaadweacaWGsbGaamytaiaacQcacaGGGcWaaeWa a8aabaWdbmaalaaapaqaa8qacaWGtbGaamiuaiaadoeacaGGFbGaam OraiaadYeacaWGpbGaam4vaaWdaeaapeGaamiuaiaadMeacaWGobGa ai4xaiaadseacaWGjbGaamyqaaaaaiaawIcacaGLPaaapaWaaWbaaS qabeaapeGaamiwaiaac+facaWGpbGaai4xaiaadseacaWGqbGaai4x aiaadweacaWGybGaamiuaaaakiaacQcacaGGGcWaaeWaa8aabaWdbm aalaaapaqaa8qacaWGtbGaamiuaiaadoeacaGGFbGaam4qaiaadkfa caWGpbGaam4uaiaadofaa8aabaWdbiaadcfacaWGjbGaamOtaiaac+ facaWGebGaamysaiaadgeaaaaacaGLOaGaayzkaaWdamaaCaaaleqa baWdbiaadofacaGGFbGaam4taiaac+facaWGebGaamiuaiaac+faca WGfbGaamiwaiaadcfaaaGccaGGQaGaamOuaiaadwgapaWaaWbaaSqa beaapeGaamOuaiaadweacaGGFbGaamiraiaadcfacaGGFbGaamyrai aadIfacaWGqbaaaaaa@847E@
    R G H _ T E R M =   R G H _ R A T _ C O E F *   W A L L _ R G H H Y D _ D I A R G H _ R A T _ E X P + 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaam4raiaadIeacaGGFbGaamivaiaadweacaWGsbGaamyt aiabg2da9iaacckacaWGsbGaam4raiaadIeacaGGFbGaamOuaiaadg eacaWGubGaai4xaiaadoeacaWGpbGaamyraiaadAeacaGGQaGaaiiO amaabmaapaqaa8qadaWcaaWdaeaapeGaam4vaiaadgeacaWGmbGaam itaiaac+facaWGsbGaam4raiaadIeaa8aabaWdbiaadIeacaWGzbGa amiraiaac+facaWGebGaamysaiaadgeaaaaacaGLOaGaayzkaaWdam aaCaaaleqabaWdbiaadkfacaWGhbGaamisaiaac+facaWGsbGaamyq aiaadsfacaGGFbGaamyraiaadIfacaWGqbaaaOGaey4kaSIaaGymaa aa@63EC@

  2. Metzger (ref 2).

    This is for staggered pin-fin arrays and smooth walls. The passage is typically narrow with the pin height close to the pin diameter. The passage shape is typically found in cooled turbine blade training edges. The base Nusselt number equation is for the average of 10 rows in the flow direction.

    N u = 0.135 * R e 0.69  *  S P C _ F L O W P I N _ D I A .34 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDaiabg2da9iaaicdacaGGUaGaaGymaiaaiodacaaI 1aGaaiOkaiaadkfacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUa GaaGOnaiaaiMdaaaGccaqGGcGaaeOkaiaabckadaqadaWdaeaapeWa aSaaa8aabaWdbiaadofacaWGqbGaam4qaiaac+facaWGgbGaamitai aad+eacaWGxbaapaqaa8qacaWGqbGaamysaiaad6eacaGGFbGaamir aiaadMeacaWGbbaaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacq GHsislcaGGUaGaaG4maiaaisdaaaaaaa@56EB@

    Limits:

    SPC_CROSS PIN_DIA =2.5,     1.5< SPC_FLOW PIN_DIA <5,     2,000<Re<100,000,   0.5 PIN_HGT PIN_DIA 3    MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaam4uaiaadcfacaWGdbGaai4xaiaadoeacaWG sbGaam4taiaadofacaWGtbaapaqaa8qacaWGqbGaamysaiaad6eaca GGFbGaamiraiaadMeacaWGbbaaaiabg2da9iaaikdacaGGUaGaaGyn aiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaigdacaGGUa GaaGynaiabgYda8maalaaapaqaa8qacaWGtbGaamiuaiaadoeacaGG FbGaamOraiaadYeacaWGpbGaam4vaaWdaeaapeGaamiuaiaadMeaca WGobGaai4xaiaadseacaWGjbGaamyqaaaacqGH8aapcaaI1aGaaiil aiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaGOmaiaacYcacaaIWa GaaGimaiaaicdacqGH8aapcaWGsbGaamyzaiabgYda8iaaigdacaaI WaGaaGimaiaacYcacaaIWaGaaGimaiaaicdacaGGSaGaaiiOaiaacc kacaGGGcGaaGimaiaac6cacaaI1aGaeyizIm6aaSaaa8aabaWdbiaa dcfacaWGjbGaamOtaiaac+facaWGibGaam4raiaadsfaa8aabaWdbi aadcfacaWGjbGaamOtaiaac+facaWGebGaamysaiaadgeaaaGaeyiz ImQaaG4maiaacckacaGGGcGaaiiOaaaa@8B46@

  3. Corbett (ref 1).

    This is for staggered pin-fin arrays and rough walls. The passage is typically narrow with the pin height close to the pin diameter. The passage shape is typically found in cooled turbine blade training edges. The base Nusselt number equation is for the average of multiple rows in the flow direction.

    N u = 0.127 * R G H _ T E R M *   S P C _ F L O W P I N _ D I A 0.066 *   S P C _ C R O S S P I N _ D I A 0.054 * R e 0.657 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDaiabg2da9iaaicdacaGGUaGaaGymaiaaikdacaaI 3aGaaiOkaiaadkfacaWGhbGaamisaiaac+facaWGubGaamyraiaadk facaWGnbGaaiOkaiaacckadaqadaWdaeaapeWaaSaaa8aabaWdbiaa dofacaWGqbGaam4qaiaac+facaWGgbGaamitaiaad+eacaWGxbaapa qaa8qacaWGqbGaamysaiaad6eacaGGFbGaamiraiaadMeacaWGbbaa aaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacqGHsislcaaIWaGaai OlaiaaicdacaaI2aGaaGOnaaaakiaacQcacaGGGcWaaeWaa8aabaWd bmaalaaapaqaa8qacaWGtbGaamiuaiaadoeacaGGFbGaam4qaiaadk facaWGpbGaam4uaiaadofaa8aabaWdbiaadcfacaWGjbGaamOtaiaa c+facaWGebGaamysaiaadgeaaaaacaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaicdacaGGUaGaaGimaiaaiwdacaaI0aaaaOGaaiOkaiaa dkfacaWGLbWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGOnaiaaiw dacaaI3aaaaaaa@7440@
    R G H _ T E R M =   16.22 *   W A L L _ R G H H Y D _ D I A 0.752 + 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaam4raiaadIeacaGGFbGaamivaiaadweacaWGsbGaamyt aiabg2da9iaacckacaaIXaGaaGOnaiaac6cacaaIYaGaaGOmaiaacQ cacaGGGcWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGxbGaamyqaiaa dYeacaWGmbGaai4xaiaadkfacaWGhbGaamisaaWdaeaapeGaamisai aadMfacaWGebGaai4xaiaadseacaWGjbGaamyqaaaaaiaawIcacaGL PaaapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI3aGaaGynaiaaik daaaGccqGHRaWkcaaIXaaaaa@5834@

    Limits:

      2 SPC_CROSS PIN_DIA 4,     2< SPC_FLOW PIN_DIA <4,     2,000<Re<50,000,   1 PIN_HGT PIN_DIA 2,  .011 WALL_RGH HYD_DIA .015    MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaaiiOaiaaikdacqGHKjYOdaWcaaWdaeaapeGaam4uaiaa dcfacaWGdbGaai4xaiaadoeacaWGsbGaam4taiaadofacaWGtbaapa qaa8qacaWGqbGaamysaiaad6eacaGGFbGaamiraiaadMeacaWGbbaa aiabgsMiJkaaisdacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaaIYaGaeyipaWZaaSaaa8aabaWdbiaadofacaWGqbGaam4qaiaa c+facaWGgbGaamitaiaad+eacaWGxbaapaqaa8qacaWGqbGaamysai aad6eacaGGFbGaamiraiaadMeacaWGbbaaaiabgYda8iaaisdacaGG SaGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaaIYaGaaiilaiaaic dacaaIWaGaaGimaiabgYda8iaadkfacaWGLbGaeyipaWJaaGynaiaa icdacaGGSaGaaGimaiaaicdacaaIWaGaaiilaiaacckacaGGGcGaai iOaiaaigdacqGHKjYOdaWcaaWdaeaapeGaamiuaiaadMeacaWGobGa ai4xaiaadIeacaWGhbGaamivaaWdaeaapeGaamiuaiaadMeacaWGob Gaai4xaiaadseacaWGjbGaamyqaaaacqGHKjYOcaaIYaGaaiilaiaa cckacaGGGcGaaiOlaiaaicdacaaIXaGaaGymaiabgsMiJoaalaaapa qaa8qacaWGxbGaamyqaiaadYeacaWGmbGaai4xaiaadkfacaWGhbGa amisaaWdaeaapeGaamisaiaadMfacaWGebGaai4xaiaadseacaWGjb GaamyqaaaacqGHKjYOcaGGUaGaaGimaiaaigdacaaI1aGaaiiOaiaa cckacaGGGcaaaa@A46A@

Where:

All correlations use a Reynolds number based on the pin diameter and a flow area that includes blockage.

R e = m     ˙ PIN _ DIA A r e a m i n   μ = R e y n o l d s   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyzaiabg2da9maalaaapaqaamaaxacabaWdbiaad2ga caGGGcGaaiiOaaWcpaqabeaapeGaaiy2caaakiaabcfacaqGjbGaae Otaiaac+facaqGebGaaeysaiaabgeaa8aabaWdbiaadgeacaWGYbGa amyzaiaadggapaWaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aabe aak8qacaGGGcGaeqiVd0gaaiabg2da9iaadkfacaWGLbGaamyEaiaa d6gacaWGVbGaamiBaiaadsgacaWGZbGaaiiOaiaad6eacaWG1bGaam yBaiaadkgacaWGLbGaamOCaaaa@5CB9@
HTC= Nu*k PIN_DIA  where k=fluid conductivity at film temperature MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeacqGH9aqpdaWcaaWdaeaapeGaamOtaiaa dwhacaGGQaGaam4AaaWdaeaapeGaaeiuaiaabMeacaqGobGaai4xai aabseacaqGjbGaaeyqaaaacaGGGcGaam4DaiaadIgacaWGLbGaamOC aiaadwgacaGGGcGaam4Aaiabg2da9iaadAgacaWGSbGaamyDaiaadM gacaWGKbGaaiiOaiaadogacaWGVbGaamOBaiaadsgacaWG1bGaam4y aiaadshacaWGPbGaamODaiaadMgacaWG0bGaamyEaiaacckacaWGHb GaamiDaiaacckacaWGMbGaamyAaiaadYgacaWGTbGaaiiOaiaadsha caWGLbGaamyBaiaadchacaWGLbGaamOCaiaadggacaWG0bGaamyDai aadkhacaWGLbaaaa@707F@

These equations are for an average Nu over at least 10 rows of pins. If the number of pin rows in the flow direction is less than 10, a multiplier from Metzger (ref 2.) can be used by setting INLET_EFF = 2. The number of pins in the flow direction will be used along with this plot to calculate the final Nu.
Figure 3.


Table 2. Output List
Index .flo label Description
1 TNET Thermal network ID, which has the convector where this correlation is used.
2 CONV_ID Convector ID, which is using this correlation.
3 CORRLTN The correlation identifier (METZPF, CORBPF, and so on).
4 FLOW_ELM Flow element from input 1 or automatically selected.
5 FLOW Mass flow rate used in the Re calculation.
6 PIN_DIA The pin diameter.
7 PIN_HGT The pin height.
8 NUM_FLOW Number of pins in the flow direction.
9 NUM_CROSS Number of pins perpendicular to the flow direction.
10 X_O_DP Pin spacing in the flow direction/pin diameter.
11 S_O_DP Pin spacing perpendicular to the flow direction/pin diameter.
12 RE Reynolds number.
13 NU Calculated Nusselt number.
14 HTC Calculated heat transfer coefficient.

Heat Transfer Correlation References

  1. Corbett, T.M., Thole, K.A., Bollapragada, S., “Impacts of Pin Fin Shape and Spacing on Heat Transfer and Pressure Losses,” ASME Journal of Turbomachinery, Vol 145, May 2023.
  2. Metzger, D. E., Shepard, W. B., and Haley, S. W., 1986, “Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence,” Paper No. 86-GT-132, ASME, pp. 1–7.