Friction Correlations

The friction in the Flow Simulator element can be calculated by the given equation, where:



stands for the calculated friction based on the user-selected friction mode (Abauf, Swamee), friction type (Fanning or Darcy), and Re (to determine whether it is in a turbulent region, or in a laminar region).

If ReDh < ReTurb, laminar friction calculations take place, otherwise, the turbulent friction calculation routine is used.

Nomenclature Subscripts
f: friction F: fanning
Re: Reynolds number D: darcy
FMULT: friction multiplier turb: turbulent flow
ε: sand grain roughness lam: laminar flow
A: Cross sectional area Abuaf: Abuaf friction relation
L+: Inlet station + 1/9 of 2nd station Smooth: smooth surface
XMU: dynamic viscosity Rough: rough surface
W: mass flow rate SJ: Swamee-Jain approximation
X: station length Dh: hydraulic diameter
L: equivalent diameter

Laminar Friction

Calculates the friction coefficient for laminar flow in shaped ducts based on the references Yunus A. Cengel, 2006 and Bruce Munson, 2005.

Friction coefficient for hydrodynamically fully developed flow can be calculated as:

For a Tube Element, Laminar Friction Inlets effects can be accounted. Friction coefficient for hydrodynamically developing flow with “Muzychka Yovanovich Laminar Inlet Effects” can be calculated as:

The friction coefficient for combining developing flow and fully developed flow can be calculated as:

Darcy type friction is calculated as

Fanning type friction is calculated as:

Turbulent Friction

Calculates the turbulent friction for smooth or rough walls.

Abuaf Friction Relation
The Abuaf friction relation should generally be used for smooth walled tubes.

In Flow Simulator, you have the option to use the Abuaf friction relation together with wall roughness. The following adjustment equation is used:

Swamee-Jain Approximation of the Colebrook-White Equation (Moody Diagram)

The Darcy and Fanning type frictions are calculated as:

User-specified Friction Factor

Roughness

Surface roughness values can be entered in four different measurement types. The roughness values are converted to sand grain roughness equivalents using the following equations from table 1 of reference 63.
ε=5.863∗Ra, Ra=Average Absolute Roughness
ε=3.100∗Rrms, Rrms=Root Mean Square Roughness
ε=0.978∗Rzd, Rzd=Peak to Valley Roughness

Non-Circular Shapes in Flow Simulator Tubes

The friction factor and heat transfer coefficient (HTC) correlations were developed for circular pipes. The traditional method to use these correlations on non-circular shapes is to calculate a hydraulic diameter based on the shape area and perimeter.

D h = 4   * A r e a P e r i m e t e r

The errors associated with this method can be +/-40% for laminar flow but less for turbulent flow, +/-15% (see White, ref 3).

A more accurate option is to adjust the hydraulic diameter with a friction factor ratio (see White, ref 3). The effective hydraulic diameter can then be used in the friction factor and HTC correlations.

The following table summarizes the relationship between the Dh based on 4*A/P and the effective hydraulic diameter.

Shape Effective Dh Equation Aspect Ratio (AR)
Circle DheffDh=1 AR=1
Rectangle

DheffDh=23+1124*AR*(2-AR) AR=b/a
Ellipse

D h e f f D h = 1 - . 2109 * ( 1 - A R ) 2 AR based on area and perimeter of the ellipse.

Isosceles Triangle

DheffDh=6448+11.442*AR-6.0026*AR2 AR based on area and perimeter of the triangle.

Annulus

DheffDh=1+AR2+1-AR2ln(AR)1-AR2 AR=b/a
Freeform

(Arbitrary- Shape)

DheffDh=AR*1+AR*1-192π5*AR*tanhπ2*AR.75*DhArea AR based on area and perimeter of freeform shape using a rectangle equation.

A R = ( P - P 2 - 16 * A ) ( P + P 2 - 16 * A )

See Blevins (ref 15) and Muzychka et al. (ref 50) for additional information.

If the compressible tube, advanced orifice, and incompressible tube have a cross sectional shape that is not circular, the equations in this table are used for the effective hydraulic diameter equation.

Two-phase Flow Friction

The friction factor for two-phase flow (liquid and gas) in an incompressible tube can be calculated using two options. The homogenous approach uses the laminar and turbulent equations shown above with fluid properties based on the liquid/gas mixture. The second approach uses friction equations developed by Friedel (ref 64).

= Δ P Δ L 2 p h a s e   Δ P Δ L l i q u i d   o n l y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHfiIXcqGH9aqpdaWcaaWdaeaapeWaaeWaa8aabaWdbmaalaaa paqaa8qacqqHuoarcaWGqbaapaqaa8qacqqHuoarcaWGmbaaaaGaay jkaiaawMcaa8aadaWgaaWcbaWdbiaaikdacqGHsislcaWGWbGaamiA aiaadggacaWGZbGaamyzaiaacckaa8aabeaaaOqaa8qadaqadaWdae aapeWaaSaaa8aabaWdbiabfs5aejaadcfaa8aabaWdbiabfs5aejaa dYeaaaaacaGLOaGaayzkaaWdamaaBaaaleaapeGaamiBaiaadMgaca WGXbGaamyDaiaadMgacaWGKbGaaiiOaiaad+gacaWGUbGaamiBaiaa dMhaa8aabeaaaaaaaa@5876@

= E + 3.24   F   H F r 0.045   W e 0.035 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqGHfiIXcqGH9aqpcaWGfbGaey4kaSYaaSaaa8aabaWdbiaaioda caGGUaGaaGOmaiaaisdacaGGGcGaamOraiaacckacaWGibaapaqaa8 qacaWGgbGaamOCa8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaicda caaI0aGaaGynaaaakiaacckacaWGxbGaamyza8aadaahaaWcbeqaa8 qacaaIWaGaaiOlaiaaicdacaaIZaGaaGynaaaaaaaaaa@4DE9@

E = 1 x 2 + x 2 ρ l f g ρ g f l MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbGaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHsislcaWG4baa caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkca WG4bWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeWaaSaa a8aabaWdbiabeg8aY9aadaWgaaWcbaWdbiaadYgaa8aabeaak8qaca WGMbWdamaaBaaaleaapeGaam4zaaWdaeqaaaGcbaWdbiabeg8aY9aa daWgaaWcbaWdbiaadEgaa8aabeaak8qacaWGMbWdamaaBaaaleaape GaamiBaaWdaeqaaaaaaOWdbiaawIcacaGLPaaaaaa@4CEB@

F = x 0.78 1 x 0.224 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbGaeyypa0JaamiEa8aadaahaaWcbeqaa8qacaaIWaGaaiOl aiaaiEdacaaI4aaaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWG4b aacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGOm aiaaikdacaaI0aaaaaaa@4462@

H = ρ l ρ g 0.91 μ g μ l 0.19 1 μ g μ l 0.7 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaeyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacqaHbpGC paWaaSbaaSqaa8qacaWGSbaapaqabaaakeaapeGaeqyWdi3damaaBa aaleaapeGaam4zaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWba aSqabeaapeGaaGimaiaac6cacaaI5aGaaGymaaaakmaabmaapaqaa8 qadaWcaaWdaeaapeGaeqiVd02damaaBaaaleaapeGaam4zaaWdaeqa aaGcbaWdbiabeY7aT9aadaWgaaWcbaWdbiaadYgaa8aabeaaaaaak8 qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGym aiaaiMdaaaGcdaqadaWdaeaapeGaaGymaiabgkHiTmaalaaapaqaa8 qacqaH8oqBpaWaaSbaaSqaa8qacaWGNbaapaqabaaakeaapeGaeqiV d02damaaBaaaleaapeGaamiBaaWdaeqaaaaaaOWdbiaawIcacaGLPa aapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI3aaaaaaa@5AB4@

F r = F r o u d e   N u m b e r = U 2 g L   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGgbGaamOCaiabg2da9iaadAeacaWGYbGaam4BaiaadwhacaWG KbGaamyzaiaacckacaWGobGaamyDaiaad2gacaWGIbGaamyzaiaadk hacqGH9aqpdaWcaaWdaeaapeGaamyva8aadaahaaWcbeqaa8qacaaI YaaaaaGcpaqaa8qacaWGNbGaamitaaaacaGGGcaaaa@4B2B@

W e = W e b e r   N u m b e r = ρ U 2 D h σ   ρ   i s   d e n s i t y   o f   t h e   m i x t u r e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbGaamyzaiabg2da9iaadEfacaWGLbGaamOyaiaadwgacaWG YbGaaiiOaiaad6eacaWG1bGaamyBaiaadkgacaWGLbGaamOCaiabg2 da9maalaaapaqaa8qacqaHbpGCcaWGvbWdamaaCaaaleqabaWdbiaa ikdaaaGccaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaaGcbaWdbi abeo8aZbaacaGGGcWaaeWaa8aabaWdbiabeg8aYjaacckacaWGPbGa am4CaiaacckacaWGKbGaamyzaiaad6gacaWGZbGaamyAaiaadshaca WG5bGaaiiOaiaad+gacaWGMbGaaiiOaiaadshacaWGObGaamyzaiaa cckacaWGTbGaamyAaiaadIhacaWG0bGaamyDaiaadkhacaWGLbaaca GLOaGaayzkaaaaaa@6B10@

x = m g ˙ m g ˙ + m l ˙ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bGaeyypa0ZaaSaaa8aabaWaaCbiaeaapeGaamyBa8aadaWg aaWcbaWdbiaadEgaa8aabeaaaeqabaWdbiaacMTaaaaak8aabaWaaC biaeaapeGaamyBa8aadaWgaaWcbaWdbiaadEgaa8aabeaaaeqabaWd biaacMTaaaGccqGHRaWkpaWaaCbiaeaapeGaamyBa8aadaWgaaWcba WdbiaadYgaa8aabeaaaeqabaWdbiaacMTaaaaaaaaa@452E@
(quality)

Recommended to use if μ l μ g <1000 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaeqiVd02damaaBaaaleaapeGaamiBaaWdaeqa aaGcbaWdbiabeY7aT9aadaWgaaWcbaWdbiaadEgaa8aabeaaaaGcpe GaeyipaWJaaGymaiaaicdacaaIWaGaaGimaaaa@4061@

Turbulator Friction

The friction factor for a turbulated surface can be calculated for the advanced or incompressible tube element. These friction factors are available when the tube's wall surface finish input is set to “Turbulated Surface”. The turbulated friction correlations are used for the tube wall sides that have turbulators. The walls without turbulators will use the smooth wall correlations from above.

The friction factor can come from four different references based on tube and turbulator geometry. The correlations and suggested use cases are described below.
  1. Webb Circular Tube (ref. 1)

    Use this correlation for circular tubes with square shaped ribs. This correlation and the Han correlations use the law-of-the-wall similarity for flow over rough surfaces. See the reference for more explanation.

    f F a n n i n g = 2 * 2.5 * l n D h 2   e + 0.95 * P e _ T E R M 3.75 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamOraiaadggacaWGUbGaamOBaiaa dMgacaWGUbGaam4zaaWdaeqaaOWdbiabg2da9iaaikdacaGGQaWaam Waa8aabaWdbiaaikdacaGGUaGaaGynaiaacQcacaWGSbGaamOBamaa bmaapaqaa8qadaWcaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadI gaa8aabeaaaOqaa8qacaaIYaGaaiiOaiaadwgaaaaacaGLOaGaayzk aaGaey4kaSIaaGimaiaac6cacaaI5aGaaGynaiaacQcacaWGqbGaam yzaiaac+facaWGubGaamyraiaadkfacaWGnbGaeyOeI0IaaG4maiaa c6cacaaI3aGaaGynaaGaay5waiaaw2faa8aadaahaaWcbeqaa8qacq GHsislcaaIYaaaaaaa@5E23@
    P e _ T E R M = P e .53 if α = 90   perpendicular to flow MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamyzaiaac+facaWGubGaamyraiaadkfacaWGnbGaeyyp a0ZaaeWaa8aabaWdbmaalaaapaqaa8qacaWGqbaapaqaa8qacaWGLb aaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaGGUaGaaGynaiaa iodaaaGccaqGPbGaaeOzaiaabckacaqGXoGaeyypa0JaaGyoaiaaic dacaqGGcWaaeWaa8aabaWdbiaabchacaqGLbGaaeOCaiaabchacaqG LbGaaeOBaiaabsgacaqGPbGaae4yaiaabwhacaqGSbGaaeyyaiaabk hacaqGGcGaaeiDaiaab+gacaqGGcGaaeOzaiaabYgacaqGVbGaae4D aaGaayjkaiaawMcaaaaa@60CA@
    P e TERM = P e .53 α 90 .98 α 90 +.5 ln .5  e +  if α<90 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGqbGaamyza8aadaWgaaWcbaWdbiaadsfacaWGfbGaamOuaiaa d2eaa8aabeaak8qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbi aadcfaa8aabaWdbiaadwgaaaaacaGLOaGaayzkaaWdamaaCaaaleqa baWdbiaac6cacaaI1aGaaG4maaaakmaabmaapaqaa8qadaWcaaWdae aapeGaeqySdegapaqaa8qacaaI5aGaaGimaaaaaiaawIcacaGLPaaa paWaaWbaaSqabeaapeGaeyOeI0YaaeWaa8aabaWdbmaalaaapaqaa8 qacaGGUaGaaGyoaiaaiIdacaGGGcGaeqySdegapaqaa8qacaaI5aGa aGimaaaacqGHRaWkcaGGUaGaaGynaiaacckacaWGSbGaamOBamaabm aapaqaa8qacaGGUaGaaGynaiaacckacaWGLbWdamaaCaaameqabaWd biabgUcaRaaaaSGaayjkaiaawMcaaaGaayjkaiaawMcaaaaakiaacc kacaqGPbGaaeOzaiaabckacaqGXoGaeyipaWJaaGyoaiaaicdaaaa@6528@

  2. TS Ravi Circular Tube (eq 11.2 in ref 2.)

    Use this correlation for circular tubes and all rib profiles. This correlation uses a statistical approach to correlate many experimental results. It is good for a wide range of geometries but may not be as accurate as the other correlations for geometries specific to them. This correlation calculates a multiplier to a smooth tube friction. The smooth friction correlation also comes from reference 2.

    f F _ s m o o t h = 1 1.58   l n R e 3.28 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamOraiaac+facaWGZbGaamyBaiaa d+gacaWGVbGaamiDaiaadIgaa8aabeaak8qacqGH9aqpdaWcaaWdae aapeGaaGymaaWdaeaapeWaaeWaa8aabaWdbiaaigdacaGGUaGaaGyn aiaaiIdacaGGGcGaamiBaiaad6gadaqadaWdaeaapeGaamOuaiaadw gaaiaawIcacaGLPaaacqGHsislcaaIZaGaaiOlaiaaikdacaaI4aaa caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaaaa@50D5@
    e x p 1 = 0.67 0.06 P D h .49 α 90 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbGaamiEaiaadchacaaIXaGaeyypa0JaaGimaiaac6cacaaI 2aGaaG4naiabgkHiTiaaicdacaGGUaGaaGimaiaaiAdadaWcaaWdae aapeGaamiuaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadIgaa8aa beaaaaGcpeGaeyOeI0IaaiOlaiaaisdacaaI5aWaaSaaa8aabaWdbi abeg7aHbWdaeaapeGaaGyoaiaaicdaaaaaaa@4B4C@
    e x p 2 = 0.37 0.157 P D h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbGaamiEaiaadchacaaIYaGaeyypa0JaaGimaiaac6cacaaI ZaGaaG4naiabgkHiTiaaicdacaGGUaGaaGymaiaaiwdacaaI3aWaaS aaa8aabaWdbiaadcfaa8aabaWdbiaadseapaWaaSbaaSqaa8qacaWG Obaapaqabaaaaaaa@4567@
    e x p 3 = 1.66 x 10 6 R e 0.33 α 90 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbGaamiEaiaadchacaaIZaGaeyypa0JaeyOeI0IaaGymaiaa c6cacaaI2aGaaGOnaiaadIhacaaIXaGaaGima8aadaahaaWcbeqaa8 qacqGHsislcaaI2aaaaOGaamOuaiaadwgacqGHsislcaaIWaGaaiOl aiaaiodacaaIZaWaaSaaa8aabaWdbiabeg7aHbWdaeaapeGaaGyoai aaicdaaaaaaa@4C04@
    e x p 4 = 4.59 + 4.11 x 10 6 R e 0.15 P D h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbGaamiEaiaadchacaaI0aGaeyypa0JaaGinaiaac6cacaaI 1aGaaGyoaiabgUcaRiaaisdacaGGUaGaaGymaiaaigdacaWG4bGaaG ymaiaaicdapaWaaWbaaSqabeaapeGaeyOeI0IaaGOnaaaakiaadkfa caWGLbGaeyOeI0IaaGimaiaac6cacaaIXaGaaGynamaalaaapaqaa8 qacaWGqbaapaqaa8qacaWGebWdamaaBaaaleaapeGaamiAaaWdaeqa aaaaaaa@4EAE@
    f m u l t = 1 + 29.1   R e e x p 1   e D h e x p 2 P D h e x p 3 α 90 e x p 4 1 + 2.94 n s i n β 15 16 16 15 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamyBaiaadwhacaWGSbGaamiDaaWd aeqaaOWdbiabg2da9maacmaapaqaa8qacaaIXaGaey4kaSYaamWaa8 aabaWdbiaaikdacaaI5aGaaiOlaiaaigdacaGGGcGaamOuaiaadwga paWaaWbaaSqabeaapeGaamyzaiaadIhacaWGWbGaaGymaaaakiaacc kadaqadaWdaeaapeWaaSaaa8aabaWdbiaadwgaa8aabaWdbiaadsea paWaaSbaaSqaa8qacaWGObaapaqabaaaaaGcpeGaayjkaiaawMcaa8 aadaahaaWcbeqaa8qacaWGLbGaamiEaiaadchacaaIYaaaaOWaaeWa a8aabaWdbmaalaaapaqaa8qacaWGqbaapaqaa8qacaWGebWdamaaBa aaleaapeGaamiAaaWdaeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWba aSqabeaapeGaamyzaiaadIhacaWGWbGaaG4maaaakmaabmaapaqaa8 qadaWcaaWdaeaapeGaeqySdegapaqaa8qacaaI5aGaaGimaaaaaiaa wIcacaGLPaaapaWaaWbaaSqabeaapeGaamyzaiaadIhacaWGWbGaaG inaaaakmaabmaapaqaa8qacaaIXaGaey4kaSYaaSaaa8aabaWdbiaa ikdacaGGUaGaaGyoaiaaisdaa8aabaWdbiaad6gaaaaacaGLOaGaay zkaaGaam4CaiaadMgacaWGUbGaeqOSdigacaGLBbGaayzxaaWdamaa CaaaleqabaWdbmaalaaapaqaa8qacaaIXaGaaGynaaWdaeaapeGaaG ymaiaaiAdaaaaaaaGccaGL7bGaayzFaaWdamaaCaaaleqabaWdbmaa laaapaqaa8qacaaIXaGaaGOnaaWdaeaapeGaaGymaiaaiwdaaaaaaa aa@7B28@
    f F a n n i n g = f m u l t * f F _ s m o o t h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamOraiaadggacaWGUbGaamOBaiaa dMgacaWGUbGaam4zaaWdaeqaaOWdbiabg2da9iaadAgapaWaaSbaaS qaa8qacaWGTbGaamyDaiaadYgacaWG0baapaqabaGcpeGaaeOkaiaa dAgapaWaaSbaaSqaa8qacaWGgbGaai4xaiaadohacaWGTbGaam4Bai aad+gacaWG0bGaamiAaaWdaeqaaaaa@4D6E@

    Limits:

    0.01< e D h <0.2,     .1< P D h <4,     6,000<Re<160,000,   .66<Pr<10,  25<α<90   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIWaGaaiOlaiaaicdacaaIXaGaeyipaWZaaSaaa8aabaWdbiaa dwgaa8aabaWdbiaadseapaWaaSbaaSqaa8qacaWGObaapaqabaaaaO WdbiabgYda8iaaicdacaGGUaGaaGOmaiaacYcacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaac6cacaaIXaGaeyipaWZaaSaaa8aabaWdbi aadcfaa8aabaWdbiaadseapaWaaSbaaSqaa8qacaWGObaapaqabaaa aOWdbiabgYda8iaaisdacaGGSaGaaiiOaiaacckacaGGGcGaaiiOai aacckacaaI2aGaaiilaiaaicdacaaIWaGaaGimaiabgYda8iaadkfa caWGLbGaeyipaWJaaGymaiaaiAdacaaIWaGaaiilaiaaicdacaaIWa GaaGimaiaacYcacaGGGcGaaiiOaiaacckacaGGUaGaaGOnaiaaiAda cqGH8aapcaWGqbGaamOCaiabgYda8iaaigdacaaIWaGaaiilaiaacc kacaGGGcGaaGOmaiaaiwdacqGH8aapcqaHXoqycqGH8aapcaaI5aGa aGimaiaacckacaGGGcaaaa@78C3@

  3. Han 90 deg, 2-sided rectangular tube (ref 3.)

    Use this correlation for a rectangular shaped passage with ribs on two sides. This is for ribs that are perpendicular to the flow only.

        R = 3.2 * P 10   e 0.35   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaaiiOaiaadkfacqGH9aqpcaaIZaGaaiOlaiaaikdacaGG QaWaaeWaa8aabaWdbmaalaaapaqaa8qacaWGqbaapaqaa8qacaaIXa GaaGimaiaacckacaWGLbaaaaGaayjkaiaawMcaa8aadaahaaWcbeqa a8qacaaIWaGaaiOlaiaaiodacaaI1aaaaOGaaiiOaaaa@47C6@
    Z = 2   W W + H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGAbGaeyypa0ZaaSaaa8aabaWdbiaaikdacaGGGcGaam4vaaWd aeaapeGaam4vaiabgUcaRiaadIeaaaaaaa@3D92@
    f F a n n i n g _ 4 = 2 R 2.5   l n 2   Z e D h 2.5 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamOraiaadggacaWGUbGaamOBaiaa dMgacaWGUbGaam4zaiaac+facaaI0aaapaqabaGcpeGaeyypa0ZaaS aaa8aabaWdbiaaikdaa8aabaWdbmaabmaapaqaa8qacaWGsbGaeyOe I0IaaGOmaiaac6cacaaI1aGaaiiOaiaadYgacaWGUbWaaeWaa8aaba WdbiaaikdacaGGGcGaamOwamaalaaapaqaa8qacaWGLbaapaqaa8qa caWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaaaaaOWdbiaawIcaca GLPaaacqGHsislcaaIYaGaaiOlaiaaiwdaaiaawIcacaGLPaaapaWa aWbaaSqabeaapeGaaGOmaaaaaaaaaa@5618@

    Limits:

    e + >50,   0.021< e D h <0.078,     10< P e <20,    1< W H <4,    8000<Re<80,000,     Pr~0.7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbWdamaaCaaaleqabaWdbiabgUcaRaaakiabg6da+iaaiwda caaIWaGaaiilaiaacckacaGGGcGaaiiOaiaaicdacaGGUaGaaGimai aaikdacaaIXaGaeyipaWZaaSaaa8aabaWdbiaadwgaa8aabaWdbiaa dseapaWaaSbaaSqaa8qacaWGObaapaqabaaaaOWdbiabgYda8iaaic dacaGGUaGaaGimaiaaiEdacaaI4aGaaiilaiaacckacaGGGcGaaiiO aiaacckacaGGGcGaaGymaiaaicdacqGH8aapdaWcaaWdaeaapeGaam iuaaWdaeaapeGaamyzaaaacqGH8aapcaaIYaGaaGimaiaacYcacaGG GcGaaiiOaiaacckacaGGGcGaaGymaiabgYda8maalaaapaqaa8qaca WGxbaapaqaa8qacaWGibaaaiabgYda8iaaisdacaGGSaGaaiiOaiaa cckacaGGGcGaaiiOaiaaiIdacaaIWaGaaGimaiaaicdacqGH8aapca WGsbGaamyzaiabgYda8iaaiIdacaaIWaGaaiilaiaaicdacaaIWaGa aGimaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaadcfaca WGYbGaaiOFaiaaicdacaGGUaGaaG4naaaa@7F55@

  4. Han Angled, 2-sided rectangular tube (ref 4 and 5)

    Use this correlation for a rectangular shaped passage with ribs on two sides. This is for ribs that are 30 to 90 degrees (perpendicular) to the flow.

    α t e r m = 12.31 27.07   α 90 + 17.86   α 90 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHXoqypaWaaSbaaSqaa8qacaWG0bGaamyzaiaadkhacaWGTbaa paqabaGcpeGaeyypa0JaaGymaiaaikdacaGGUaGaaG4maiaaigdacq GHsislcaaIYaGaaG4naiaac6cacaaIWaGaaG4naiaacckadaWcaaWd aeaapeGaeqySdegapaqaa8qacaaI5aGaaGimaaaacqGHRaWkcaaIXa GaaG4naiaac6cacaaI4aGaaGOnaiaacckadaqadaWdaeaapeWaaSaa a8aabaWdbiabeg7aHbWdaeaapeGaaGyoaiaaicdaaaaacaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaa@5593@
    R = α t e r m * P 10   e 0.35   w h m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaeyypa0JaeqySde2damaaBaaaleaapeGaamiDaiaadwga caWGYbGaamyBaaWdaeqaaOWdbiaacQcadaqadaWdaeaapeWaaSaaa8 aabaWdbiaadcfaa8aabaWdbiaaigdacaaIWaGaaiiOaiaadwgaaaaa caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG4mai aaiwdaaaGccaGGGcWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG3baa paqaa8qacaWGObaaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qaca WGTbaaaaaa@4E4F@
    f F a n n i n g _ 4 = 2 R 2.5   l n 2   Z e D h 2.5 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamOraiaadggacaWGUbGaamOBaiaa dMgacaWGUbGaam4zaiaac+facaaI0aaapaqabaGcpeGaeyypa0ZaaS aaa8aabaWdbiaaikdaa8aabaWdbmaabmaapaqaa8qacaWGsbGaeyOe I0IaaGOmaiaac6cacaaI1aGaaiiOaiaadYgacaWGUbWaaeWaa8aaba WdbiaaikdacaGGGcGaamOwamaalaaapaqaa8qacaWGLbaapaqaa8qa caWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaaaaaOWdbiaawIcaca GLPaaacqGHsislcaaIYaGaaiOlaiaaiwdaaiaawIcacaGLPaaapaWa aWbaaSqabeaapeGaaGOmaaaaaaaaaa@5618@

    Exponent, m, depends on the rectangle aspect ratio.

    For 0.25<w/h<1 (ref 4):

    m = .5       for     α > 60 ,     m = 0       for   α < 30     and linear between  30  and  60 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaeyypa0JaeyOeI0IaaiOlaiaaiwdacaGGGcGaaiiOaiaa cckacaqGMbGaae4BaiaabkhacaGGGcGaaiiOaiabeg7aHjabg6da+i aaiAdacaaIWaGaaiilaiaacckacaGGGcGaamyBaiabg2da9iaaicda caGGGcGaaiiOaiaacckacaqGMbGaae4BaiaabkhacaGGGcGaeqySde MaeyipaWJaaG4maiaaicdacaGGGcGaaiiOaiaabggacaqGUbGaaeiz aiaabckacaqGSbGaaeyAaiaab6gacaqGLbGaaeyyaiaabkhacaqGGc GaaeOyaiaabwgacaqG0bGaae4DaiaabwgacaqGLbGaaeOBaiaabcka caaIZaGaaGimaiaabckacaqGHbGaaeOBaiaabsgacaqGGcGaaGOnai aaicdaaaa@74A3@

    For 1<w/h<4 (ref 5):

    m = .35       for   α 80 ,     m = 3.15 .035 * α           for     α 80   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaeyypa0JaaiOlaiaaiodacaaI1aGaaiiOaiaacckacaGG GcGaaeOzaiaab+gacaqGYbGaaiiOaiabeg7aHnaaamaapaqaa8qaca aI4aGaaGimaiaacYcacaGGGcGaaiiOaiaad2gacqGH9aqpcaaIZaGa aiOlaiaaigdacaaI1aGaeyOeI0IaaiOlaiaaicdacaaIZaGaaGynai aacQcacqaHXoqycaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaabAga caqGVbGaaeOCaiaacckacaGGGcGaeqySdegacaGLPmIaayPkJaGaaG ioaiaaicdacaGGGcaaaa@63AE@

    Limits:

    0.02 < e D h < 0.078 ,           10 < P e < 20 ,         .25 < W H < 4 ,         3000 < R e < 60 , 000 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIWaGaaiOlaiaaicdacaaIYaGaeyipaWZaaSaaa8aabaWdbiaa dwgaa8aabaWdbiaadseapaWaaSbaaSqaa8qacaWGObaapaqabaaaaO WdbiabgYda8iaaicdacaGGUaGaaGimaiaaiEdacaaI4aGaaiilaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaGymaiaaicdacqGH8aapda WcaaWdaeaapeGaamiuaaWdaeaapeGaamyzaaaacqGH8aapcaaIYaGa aGimaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiOlaiaaikdaca aI1aGaeyipaWZaaSaaa8aabaWdbiaadEfaa8aabaWdbiaadIeaaaGa eyipaWJaaGinaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaG4mai aaicdacaaIWaGaaGimaiabgYda8iaadkfacaWGLbGaeyipaWJaaGOn aiaaicdacaGGSaGaaGimaiaaicdacaaIWaaaaa@6BE7@

    Where:

    R e = m   ˙ D h A r e a   μ = a x i a l   R e y n o l d s   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyzaiabg2da9maalaaapaqaamaaxacabaWdbiaad2ga caGGGcaal8aabeqaa8qacaGGzlaaaOGaamira8aadaWgaaWcbaWdbi aadIgaa8aabeaaaOqaa8qacaWGbbGaamOCaiaadwgacaWGHbGaaiiO aiabeY7aTbaacqGH9aqpcaWGHbGaamiEaiaadMgacaWGHbGaamiBai aacckacaWGsbGaamyzaiaadMhacaWGUbGaam4BaiaadYgacaWGKbGa am4CaiaacckacaWGobGaamyDaiaad2gacaWGIbGaamyzaiaadkhaaa a@5A7B@
    D h = H y d r a u l i c   D i a m t e r                 P = r i b   p i t c h ,     e = R i b   H e i g h t   a n d   w i d t h ,     α = r i b   a n g l e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabg2da9iaa dIeacaWG5bGaamizaiaadkhacaWGHbGaamyDaiaadYgacaWGPbGaam 4yaiaacckacaWGebGaamyAaiaadggacaWGTbGaamiDaiaadwgacaWG YbGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacc kacaWGqbGaeyypa0JaamOCaiaadMgacaWGIbGaaiiOaiaadchacaWG PbGaamiDaiaadogacaWGObGaaiilaiaacckacaGGGcGaamyzaiabg2 da9iaadkfacaWGPbGaamOyaiaacckacaWGibGaamyzaiaadMgacaWG NbGaamiAaiaadshacaGGGcWaaeWaa8aabaWdbiaadggacaWGUbGaam izaiaacckacaWG3bGaamyAaiaadsgacaWG0bGaamiAaaGaayjkaiaa wMcaaiaacYcacaGGGcGaaiiOaiabeg7aHjabg2da9iaadkhacaWGPb GaamOyaiaacckacaWGHbGaamOBaiaadEgacaWGSbGaamyzaaaa@848A@
    w = r e c t a n g l e   s i d e   w a l l   l e n g t h   w i t h   r i b s ,     h = r e c t a n g l e   s i d e   w a l l   l e n g t h   s m o o t h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bGaeyypa0JaamOCaiaadwgacaWGJbGaamiDaiaadggacaWG UbGaam4zaiaadYgacaWGLbGaaiiOaiaadohacaWGPbGaamizaiaadw gacaGGGcGaam4DaiaadggacaWGSbGaamiBaiaacckacaWGSbGaamyz aiaad6gacaWGNbGaamiDaiaadIgacaGGGcGaam4DaiaadMgacaWG0b GaamiAaiaacckacaWGYbGaamyAaiaadkgacaWGZbGaaiilaiaaccka caGGGcGaamiAaiabg2da9iaadkhacaWGLbGaam4yaiaadshacaWGHb GaamOBaiaadEgacaWGSbGaamyzaiaacckacaWGZbGaamyAaiaadsga caWGLbGaaiiOaiaadEhacaWGHbGaamiBaiaadYgacaGGGcGaamiBai aadwgacaWGUbGaam4zaiaadshacaWGObGaaiiOaiaadohacaWGTbGa am4Baiaad+gacaWG0bGaamiAaaaa@7F93@
    e + = e D h   R e   f 2 = r o u g h n e s s   R e y n o l d s   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbWdamaaCaaaleqabaWdbiabgUcaRaaakiabg2da9maalaaa paqaa8qacaWGLbaapaqaa8qacaWGebWdamaaBaaaleaapeGaamiAaa Wdaeqaaaaak8qacaGGGcGaamOuaiaadwgacaGGGcWaaOaaa8aabaWd bmaalaaapaqaa8qacaWGMbaapaqaa8qacaaIYaaaaaWcbeaakiabg2 da9iaadkhacaWGVbGaamyDaiaadEgacaWGObGaamOBaiaadwgacaWG ZbGaam4CaiaacckacaWGsbGaamyzaiaadMhacaWGUbGaam4BaiaadY gacaWGKbGaam4CaiaacckacaWGobGaamyDaiaad2gacaWGIbGaamyz aiaadkhaaaa@5BBC@
    N u = S t * P r * R e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDaiabg2da9iaadofacaWG0bGaaiOkaiaadcfacaWG YbGaaiOkaiaadkfacaWGLbaaaa@3FA5@
    HTC= Nu*k D h  where k=fluid conductivity at film temperature MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeacqGH9aqpdaWcaaWdaeaapeGaamOtaiaa dwhacaGGQaGaam4AaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadI gaa8aabeaaaaGcpeGaaiiOaiaadEhacaWGObGaamyzaiaadkhacaWG LbGaaiiOaiaadUgacqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaam izaiaacckacaWGJbGaam4Baiaad6gacaWGKbGaamyDaiaadogacaWG 0bGaamyAaiaadAhacaWGPbGaamiDaiaadMhacaGGGcGaamyyaiaads hacaGGGcGaamOzaiaadMgacaWGSbGaamyBaiaacckacaWG0bGaamyz aiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadwhacaWGYb Gaamyzaaaa@6CFF@

Friction Correlation References

  1. Webb, R. L., Eckert, E. R. G., and Goldstein, R. J. "Heat Transfer and Friction in Tubes with Repeated-Rib Roughness", Int. Journal of Heat and Mass Transfer, 14 (1971).
  2. Ravigururajan, T.S., "General correlations for pressure drop and heat transfer for single-phase turbulent flows in ribbed tubes", Iowa State Univ, Thesis, 1986.
  3. Han J.C., "Heat Transfer and Friction Characteristics in Rectangular Channels with Rib Turbulators", Journal of Heat Transfer, ASME (1988).
  4. Han, J. C., Ou, S., Park, J. S. and Lei, C. K. " Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios with Rib Turbulators" , International Journal of Heat Mass Transfer, 32, (1989).
  5. Han, J. C. and Park, J. S. "Developing Heat Transfer in Rectangular Channels with Rib Turbulators", International Journal of Heat Mass Transfer, 31, (1988).