Morris Parallel Rotating Tube

Description

A duct flow correlation to be used with tubes that are rotating, parallel to the axis of rotation, and offset from the axis of rotation.
Figure 1.


Type
Mixed Laminar-Turbulent Duct Nu
Subtype
Morris Parallel Rotating Tube
Table 1. Inputs List
Index UI Name (.flo label) Description
1 Flow Element

(FLOW_ELM)

The ID for the flow element that will be used for the mass flow rate and other correlation inputs.

If AUTO, the correlation must be applied to a convector that is connected to a fluid chamber that has only one flow element entering this chamber. The ID of this flow element is used. The element can be of almost any type, although some types do not have geometric inputs that can be obtained with the AUTO option of the remaining inputs.

2 Hydraulic Diameter

(HYD_DIA)

Passage hydraulic diameter.

If AUTO, the hydraulic diameter of the flow element from input 1 is used.

3 Flow Area

(FLOW_AREA)

Passage flow area.

If AUTO, the area of the flow element from input 1 is used. If the area from the flow element is not available, the passage is assumed circular, and the hydraulic diameter is used to calculate the area.

4 Offset Radius

(OFFSET_RAD)

Distance from the rotation centerline to the tube centerline.

If AUTO, the radius of the flow element from input 1 is used.

5 Tube Rotation Index

(ROTOR_IDX)

The index of the rotor shaft containing the RPM for this tube. The speed for this rotor shaft is set in the Run > Reference Conditions tab.

If AUTO, the rotation of the flow element from input 1 is used or an RPM associated with the surface thermal node is used.

6 HTC Multiplier

(HTC_MULT)

A constant multiplier to scale the value of the heat transfer coefficient obtained from the correlation.

Formulation

This correlation uses a Nusselt number equation by Morris (reference 1) for a fully developed turbulent flow and a Nusselt number equation by Wood (reference 2) for a laminar flow. A linear interpolation is used if the Re is in the transitional regime. The turbulent Nu is not allowed to be lower than a no rotation duct flow Nu using Gnielinski’s correlation.

Axial Reynolds number:

R e = m   ˙ D h A r e a   μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyzaiabg2da9maalaaapaqaamaaxacabaWdbiaad2ga caGGGcaal8aabeqaa8qacaGGzlaaaOGaamira8aadaWgaaWcbaWdbi aadIgaa8aabeaaaOqaa8qacaWGbbGaamOCaiaadwgacaWGHbGaaiiO aiabeY7aTbaaaaa@4582@

Rotational Reynolds number, J:

J = ω   ρ   D h 2 μ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGkbGaeyypa0ZaaSaaa8aabaWdbiabeM8a3jaacckacqaHbpGC caGGGcGaamira8aadaqhaaWcbaWdbiaadIgaa8aabaWdbiaaikdaaa aak8aabaWdbiabeY7aTbaaaaa@42A9@

Rotational Rayleigh number, Ra:

R a = H   ω 2   β   T g a s T w a l l   D h 3   ρ 2 8 * μ 2   P r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyyaiabg2da9maalaaapaqaa8qacaWGibGaaiiOaiab eM8a39aadaahaaWcbeqaa8qacaaIYaaaaOGaaiiOaiabek7aIjaacc kadaqadaWdaeaapeGaamiva8aadaWgaaWcbaWdbiaadEgacaWGHbGa am4CaaWdaeqaaOWdbiabgkHiTiaadsfapaWaaSbaaSqaa8qacaWG3b GaamyyaiaadYgacaWGSbaapaqabaaak8qacaGLOaGaayzkaaGaaiiO aiaadseapaWaaSbaaSqaa8qacaWGObaapaqabaGcdaahaaWcbeqaa8 qacaaIZaaaaOGaaiiOaiabeg8aY9aadaahaaWcbeqaa8qacaaIYaaa aaGcpaqaa8qacaaI4aGaaiOkaiabeY7aT9aadaahaaWcbeqaa8qaca aIYaaaaaaakiaacckacaWGqbGaamOCaaaa@5CFB@
H = O f f s e t   R a d i u s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaeyypa0Jaam4taiaadAgacaWGMbGaam4CaiaadwgacaWG 0bGaaiiOaiaadkfacaWGHbGaamizaiaadMgacaWG1bGaam4Caaaa@4416@

For Re <= RE_LAM (default is 2185)

N u 0 =   3.66 = n o   r o t a t i o n   N u MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDa8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGH 9aqpcaGGGcGaaG4maiaac6cacaaI2aGaaGOnaiabg2da9iaad6gaca WGVbGaaiiOaiaadkhacaWGVbGaamiDaiaadggacaWG0bGaamyAaiaa d+gacaWGUbGaaiiOaiaad6eacaWG1baaaa@4CC2@

N u l a m =   N u 0 * .262 * R a   R e   P r 0.173 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDa8aadaWgaaWcbaWdbiaadYgacaWGHbGaamyBaaWd aeqaaOWdbiabg2da9iaacckacaWGobGaamyDa8aadaWgaaWcbaWdbi aaicdaa8aabeaak8qacaGGQaGaaiOlaiaaikdacaaI2aGaaGOmaiaa cQcadaqadaWdaeaapeGaamOuaiaadggacaGGGcGaamOuaiaadwgaca GGGcGaamiuaiaadkhaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGa aGimaiaac6cacaaIXaGaaG4naiaaiodaaaaaaa@51B4@

For Re >= RE_TURB (default is 2415)

N u t u r b = .0089 * R e .8 *J .25 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDa8aadaWgaaWcbaWdbiaadshacaWG1bGaamOCaiaa dkgaa8aabeaak8qacqGH9aqpcaGGUaGaaGimaiaaicdacaaI4aGaaG yoaiaacQcacaWGsbGaamyza8aadaahaaWcbeqaa8qacaGGUaGaaGio aaaakiaabQcacaqGkbWdamaaCaaaleqabaWdbiaac6cacaaIYaGaaG ynaaaaaaa@4903@
H T C = N u * k D h   w h e r e   k = f l u i d   c o n d u c t i v i t y   a t   f i l m   t e m p e r a t u r e MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeacqGH9aqpdaWcaaWdaeaapeGaamOtaiaa dwhacaGGQaGaam4AaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadI gaa8aabeaaaaGcpeGaaiiOaiaadEhacaWGObGaamyzaiaadkhacaWG LbGaaiiOaiaadUgacqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaam izaiaacckacaWGJbGaam4Baiaad6gacaWGKbGaamyDaiaadogacaWG 0bGaamyAaiaadAhacaWGPbGaamiDaiaadMhacaGGGcGaamyyaiaads hacaGGGcGaamOzaiaadMgacaWGSbGaamyBaiaacckacaWG0bGaamyz aiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadwhacaWGYb Gaamyzaaaa@6CFB@

Table 2. Output List
Index .flo label Description
1 TNET Thermal network ID which has the convector where this correlation is used.
2 CONV_ID Convector ID which is using this correlation.
3 FLOW_ELM Flow element from input 1 or automatically selected.
4 FLOW Mass flow rate used in the Re calculation.
5 HYD_DIA The hydraulic diameter used in the HTC calculations.
6 RE_AX Axial Reynolds number.
7 RE_ROT Rotational Reynolds number, J.
8 NU Calculated Nusselt number.
9 HTC Calculated Heat Transfer Coefficient.

Heat Transfer Correlation References

  1. Morris, W.D. and Woods, J.L, Heat Transfer in the Entrance Region of Tubes That Rotate About a Parallel Axis, Journal of Mechanical Engineering Science, 20(6), 1978, 319-325.
  2. Woods, J.L and Morris, W.D., A Study of Heat Transfer in a Rotating Cylindrical Tube, ASME Journal of Heat Transfer, Nov 1980, 612-616.