Turbulated Tube

Description

A duct flow correlation to be used with tubes that have turbulators (also called ribs) on a surface. Not all surfaces of the tube wall need to have turbulators. These turbulator HTC correlations can be used with the advanced tube, incompressible tube,or can be used with convectors.
Figure 1. Use Turbulator Correlations with Tube Elements


Figure 2. Turbulator Rib Nomenclature


Type
Mixed Laminar-Turbulent Duct Nu
Subtype
Turbulated Tube
Table 1. Inputs List
Index UI Name (.flo label) Description
1 Turbulator Correlation (TURB_CORL) The HTC equation to use.

1: Webb Circ Tube

2: TS Ravi Circ Tube

3: Han 90 deg, 2-sided rect

4: Han Angled, 2-sided rect

2 Flow Element (FLOW_ELM) ID for the flow element that will be used for the mass flow rate and other correlation inputs.

If AUTO, the correlation must be applied to a convector that is connected to a fluid chamber that has only one flow element entering this chamber. The ID of this flow element will be used. The element can be of almost any type, although some types will not have geometric inputs that can be obtained with the AUTO option of the remaining inputs.

3 Hydraulic Diameter (HYD_DIA) Passage hydraulic diameter.

If AUTO, the hydraulic diameter of the flow element from input 2 will be used.

4 Flow Area (FLOW_AREA) Passage flow area.

If AUTO, the area of the flow element from input 2 will be used. If the area from the flow element is not available, the passage will be assumed circular, and the hydraulic diameter will be used to calculate the area.

5 Rib Height (RIB_HEIGHT) Perpendicular distance from the wall surface to the tip of the rib.
6 Rib Width (RIB_WIDTH) Distance between the sides of the rib. Usually, this is the same as the Rib Height and most correlations assume it is the same.

If AUTO, the width will be set equal to the height.

7 Rib Pitch (RIB_PITCH) The distance between the ribs in the flow direction.
8 Rib Angle (RIB_ANGLE) The angle between the rib and the flow direction. 90 degrees means the rib is perpendicular to the flow. Typical angles are between 45 and 90 degrees.
9 Rib Profile (RIB_PROFILE) The rib shape.

1: Circle

2: Semicircle

3: Triangular

4: Square (default)

10 Rectangle Side w Ribs (RIB_SIDE) The correlations based on Han have ribs on two sides of a rectangle. This input specifies if the ribs are on the short or long side of the rectangle.

1: Short Side

2: Long Side

11 Inlet Effects (INLET_EFF) Option for heat transfer inlet effects.

1: No inlet effects.

2: Abrupt local or uniform average inlet effects.

3: Abrupt average inlet effects.

4: Uniform local inlet effects.

5: Between uniform average and local inlet effects

6: Between abrupt average and local inlet effects.

12 Entrance Length (ENTR_LEN) Distance from the start of the heat transfer area to the boundary layer start. Used in the inlet effects calculation.

If AUTO, the length of the flow element from input 1 will be used.

13 Laminar-to-Transition Re (RE_LAM) Reynolds number where the laminar regime of the flow ends and the transitional regime starts.

If AUTO, the global transition Re is used (default=2185).

14 Transition-to-Turbulent Re (RE_TURB) Reynolds number where the transitional regime of flow ends and fully turbulent regime starts.

If AUTO, the global transition Re is used (default=2415).

15 HTC Multiplier (HTC_MULT) A constant multiplier to scale the value of the heat transfer coefficient obtained from the correlation.

Formulation

This correlation uses a Nusselt number equation by four different references, depending on the turbulator correlation chosen for input 1. The correlations and suggested use cases are described below.
  1. Webb Circular Tube (ref. 1)

    R = 0.95 * P e 0.53 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaeyypa0JaaGimaiaac6cacaaI5aGaaGynaiaacQcadaqa daWdaeaapeWaaSaaa8aabaWdbiaadcfaa8aabaWdbiaadwgaaaaaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaGynaiaa iodaaaaaaa@427A@
    G = 4.5 * e + 0.28 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaeyypa0JaaGinaiaac6cacaaI1aGaaiOkamaabmaapaqa a8qacaWGLbWdamaaCaaaleqabaWdbiabgUcaRaaaaOGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaikdacaaI4aaaaaaa @41C7@
    S t = f 2   1 1 + f 2   G * P r 0.57 R MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbGaamiDaiabg2da9maalaaapaqaa8qacaWGMbaapaqaa8qa caaIYaaaaiaacckadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymai abgUcaRmaakaaapaqaa8qadaWcaaWdaeaapeGaamOzaaWdaeaapeGa aGOmaaaaaSqabaGccaGGGcWaaeWaa8aabaWdbiaadEeacaGGQaGaam iuaiaadkhapaWaaWbaaSqabeaapeGaaGimaiaac6cacaaI1aGaaG4n aaaakiabgkHiTiaadkfaaiaawIcacaGLPaaaaaaaaa@4BFF@

    Limits:

        0.01 < e D h < 0.04 ,           10 < P e < 40 ,             3 , 000 < R e < 100 , 000 ,         Pr for air water and   n butyl alcohol MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaaiiOaiaaicdacaGGUaGaaGimaiaaigdacqGH8aapdaWc aaWdaeaapeGaamyzaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadI gaa8aabeaaaaGcpeGaeyipaWJaaGimaiaac6cacaaIWaGaaGinaiaa cYcacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaigdacaaIWaGaey ipaWZaaSaaa8aabaWdbiaadcfaa8aabaWdbiaadwgaaaGaeyipaWJa aGinaiaaicdacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca GGGcGaaG4maiaacYcacaaIWaGaaGimaiaaicdacqGH8aapcaWGsbGa amyzaiabgYda8iaaigdacaaIWaGaaGimaiaacYcacaaIWaGaaGimai aaicdacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiGaccfacaGGYbGa aeOzaiaab+gacaqGYbGaaeiOaiaabggacaqGPbGaaeOCaiaabckaca qG3bGaaeyyaiaabshacaqGLbGaaeOCaiaabckacaqGHbGaaeOBaiaa bsgacaGGGcGaaeOBaiabgkHiTiaabkgacaqG1bGaaeiDaiaabMhaca qGSbGaaeiOaiaabggacaqGSbGaae4yaiaab+gacaqGObGaae4Baiaa bYgaaaa@8BC1@

  2. TS Ravi Circular Tube (ref 2.)

    Use this correlation for circular tubes and all rib profiles listed in input 9. This correlation uses a statistical approach to correlate many experimental results. It is good for a wide range of geometries but may not be as accurate as the other correlations for geometries specific to them. This correlation calculates a multiplier to a smooth tube HTC. The Gnielinski correlation is used for the smooth duct HTC. The turbulated duct HTC is the smooth times the Hmult.

    W t e r m = 2.64 * R e .036   e D h .212 P D h .21 α 90 0.29 P r .024 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbGaamiDaiaadwgacaWGYbGaamyBaiabg2da9iaaikdacaGG UaGaaGOnaiaaisdacaGGQaGaamOuaiaadwgapaWaaWbaaSqabeaape GaaiOlaiaaicdacaaIZaGaaGOnaaaakiaacckadaqadaWdaeaapeWa aSaaa8aabaWdbiaadwgaa8aabaWdbiaadseapaWaaSbaaSqaa8qaca WGObaapaqabaaaaaGcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caGGUaGaaGOmaiaaigdacaaIYaaaaOWaaeWaa8aabaWdbmaalaaapa qaa8qacaWGqbaapaqaa8qacaWGebWdamaaBaaaleaapeGaamiAaaWd aeqaaaaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaeyOeI0 IaaiOlaiaaikdacaaIXaaaaOWaaeWaa8aabaWdbmaalaaapaqaa8qa cqaHXoqya8aabaWdbiaaiMdacaaIWaaaaaGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaaIWaGaaiOlaiaaikdacaaI5aaaaOGaamiuaiaa dkhapaWaaWbaaSqabeaapeGaeyOeI0IaaiOlaiaaicdacaaIYaGaaG inaaaaaaa@6468@
    H m u l t = 1.0 + W t e r m 7 1 7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibWdamaaBaaaleaapeGaamyBaiaadwhacaWGSbGaamiDaaWd aeqaaOWdbiabg2da9maabmaapaqaa8qacaaIXaGaaiOlaiaaicdacq GHRaWkcaWGxbGaamiDaiaadwgacaWGYbGaamyBa8aadaahaaWcbeqa a8qacaaI3aaaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbmaala aapaqaa8qacaaIXaaapaqaa8qacaaI3aaaaaaaaaa@48BB@

    Limits:

        0.01 < e D h < 0.2 ,           .1 < P D h < 4 ,           6 , 000 < R e < 160 , 000 ,       .66 < P r < 10 ,     25 < α < 90       MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaaiiOaiaaicdacaGGUaGaaGimaiaaigdacqGH8aapdaWc aaWdaeaapeGaamyzaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadI gaa8aabeaaaaGcpeGaeyipaWJaaGimaiaac6cacaaIYaGaaiilaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiOlaiaaigdacqGH8aapda WcaaWdaeaapeGaamiuaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaa dIgaa8aabeaaaaGcpeGaeyipaWJaaGinaiaacYcacaGGGcGaaiiOai aacckacaGGGcGaaiiOaiaaiAdacaGGSaGaaGimaiaaicdacaaIWaGa eyipaWJaamOuaiaadwgacqGH8aapcaaIXaGaaGOnaiaaicdacaGGSa GaaGimaiaaicdacaaIWaGaaiilaiaacckacaGGGcGaaiiOaiaac6ca caaI2aGaaGOnaiabgYda8iaadcfacaWGYbGaeyipaWJaaGymaiaaic dacaGGSaGaaiiOaiaacckacaaIYaGaaGynaiabgYda8iabeg7aHjab gYda8iaaiMdacaaIWaGaaiiOaiaacckacaGGGcaaaa@7C2F@

  3. Han 90 deg, 2-sided rectangular tube (ref 3.)

    Use this correlation for a rectangular shaped passage with ribs on 2 sides. This is for ribs that are perpendicular to the flow only.

    R = 3.2 * P 10   e 0.35 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaeyypa0JaaG4maiaac6cacaaIYaGaaiOkamaabmaapaqa a8qadaWcaaWdaeaapeGaamiuaaWdaeaapeGaaGymaiaaicdacaGGGc GaamyzaaaaaiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGimaiaa c6cacaaIZaGaaGynaaaaaaa@4450@
    G = 3.7 * e + 0.28 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaeyypa0JaaG4maiaac6cacaaI3aGaaiOkamaabmaapaqa a8qacaWGLbWdamaaCaaaleqabaWdbiabgUcaRaaaaOGaayjkaiaawM caa8aadaahaaWcbeqaa8qacaaIWaGaaiOlaiaaikdacaaI4aaaaaaa @41C8@
    S t = f 2   1 1 + f 2   G R MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbGaamiDaiabg2da9maalaaapaqaa8qacaWGMbaapaqaa8qa caaIYaaaaiaacckadaWcaaWdaeaapeGaaGymaaWdaeaapeGaaGymai abgUcaRmaakaaapaqaa8qadaWcaaWdaeaapeGaamOzaaWdaeaapeGa aGOmaaaaaSqabaGccaGGGcWaaeWaa8aabaWdbiaadEeacqGHsislca WGsbaacaGLOaGaayzkaaaaaaaa@4643@

    Limits:

      e + > 50 ,       0.021 < e D h < 0.078 ,           10 < P e < 20 ,         1 < W H < 4 ,         8000 < R e < 80 , 000 ,           P r ~ 0.7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGGcGaamyza8aadaahaaWcbeqaa8qacqGHRaWkaaGccqGH+aGp caaI1aGaaGimaiaacYcacaGGGcGaaiiOaiaacckacaaIWaGaaiOlai aaicdacaaIYaGaaGymaiabgYda8maalaaapaqaa8qacaWGLbaapaqa a8qacaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaaaak8qacqGH8a apcaaIWaGaaiOlaiaaicdacaaI3aGaaGioaiaacYcacaGGGcGaaiiO aiaacckacaGGGcGaaiiOaiaaigdacaaIWaGaeyipaWZaaSaaa8aaba Wdbiaadcfaa8aabaWdbiaadwgaaaGaeyipaWJaaGOmaiaaicdacaGG SaGaaiiOaiaacckacaGGGcGaaiiOaiaaigdacqGH8aapdaWcaaWdae aapeGaam4vaaWdaeaapeGaamisaaaacqGH8aapcaaI0aGaaiilaiaa cckacaGGGcGaaiiOaiaacckacaaI4aGaaGimaiaaicdacaaIWaGaey ipaWJaamOuaiaadwgacqGH8aapcaaI4aGaaGimaiaacYcacaaIWaGa aGimaiaaicdacaGGSaGaaiiOaiaacckacaGGGcGaaiiOaiaacckaca WGqbGaamOCaiaac6hacaaIWaGaaiOlaiaaiEdaaaa@8078@

  4. Han Angled, 2-sided rectangular tube (ref 4 and 5)

    Use this correlation for a rectangular shaped passage with ribs on two sides. This is for ribs that are 30 to 90 degrees (perpendicular) to the flow.

    α t e r m = 12.31 27.07   α 90 + 17.86   α 90 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHXoqypaWaaSbaaSqaa8qacaWG0bGaamyzaiaadkhacaWGTbaa paqabaGcpeGaeyypa0JaaGymaiaaikdacaGGUaGaaG4maiaaigdacq GHsislcaaIYaGaaG4naiaac6cacaaIWaGaaG4naiaacckadaWcaaWd aeaapeGaeqySdegapaqaa8qacaaI5aGaaGimaaaacqGHRaWkcaaIXa GaaG4naiaac6cacaaI4aGaaGOnaiaacckadaqadaWdaeaapeWaaSaa a8aabaWdbiabeg7aHbWdaeaapeGaaGyoaiaaicdaaaaacaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdaaaaaaa@5593@
    R = α t e r m * P 10   e 0.35   w h m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaeyypa0JaeqySde2damaaBaaaleaapeGaamiDaiaadwga caWGYbGaamyBaaWdaeqaaOWdbiaacQcadaqadaWdaeaapeWaaSaaa8 aabaWdbiaadcfaa8aabaWdbiaaigdacaaIWaGaaiiOaiaadwgaaaaa caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaicdacaGGUaGaaG4mai aaiwdaaaGccaGGGcWaaeWaa8aabaWdbmaalaaapaqaa8qacaWG3baa paqaa8qacaWGObaaaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qaca WGTbaaaaaa@4E4F@
    G = c * w h m m e + n   G t e r m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbGaeyypa0Jaam4yaiaacQcadaqadaWdaeaapeWaaSaaa8aa baWdbiaadEhaa8aabaWdbiaadIgaaaaacaGLOaGaayzkaaWdamaaCa aaleqabaWdbiaad2gacaWGTbaaaOWaaeWaa8aabaWdbiaadwgapaWa aWbaaSqabeaapeGaey4kaScaaaGccaGLOaGaayzkaaWdamaaCaaale qabaWdbiaad6gaaaGccaGGGcGaam4ra8aadaWgaaWcbaWdbiaadsha caWGLbGaamOCaiaad2gaa8aabeaaaaa@4AC2@

    Constants and exponents depend on the rectangle aspect ratio.

    For 0.25<w/h<1 (ref 4)

    m = .5       for     α > 60 ,     m = 0       for   α < 30     and linear between  30  and  60 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaeyypa0JaeyOeI0IaaiOlaiaaiwdacaGGGcGaaiiOaiaa cckacaqGMbGaae4BaiaabkhacaGGGcGaaiiOaiabeg7aHjabg6da+i aaiAdacaaIWaGaaiilaiaacckacaGGGcGaamyBaiabg2da9iaaicda caGGGcGaaiiOaiaacckacaqGMbGaae4BaiaabkhacaGGGcGaeqySde MaeyipaWJaaG4maiaaicdacaGGGcGaaiiOaiaabggacaqGUbGaaeiz aiaabckacaqGSbGaaeyAaiaab6gacaqGLbGaaeyyaiaabkhacaqGGc GaaeOyaiaabwgacaqG0bGaae4DaiaabwgacaqGLbGaaeOBaiaabcka caaIZaGaaGimaiaabckacaqGHbGaaeOBaiaabsgacaqGGcGaaGOnai aaicdaaaa@74A3@
    n = 0.35       for   w h > 0.5   and  n = 0.35 * w h .44         for   w h < 0.5   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGimaiaac6cacaaIZaGaaGynaiaacckacaGG GcGaaiiOaiaabAgacaqGVbGaaeOCaiaacckadaWcaaWdaeaapeGaam 4DaaWdaeaapeGaamiAaaaacqGH+aGpcaaIWaGaaiOlaiaaiwdacaGG GcGaaeyyaiaab6gacaqGKbGaaeiOaiaad6gacqGH9aqpcaaIWaGaai OlaiaaiodacaaI1aGaaiOkamaabmaapaqaa8qadaWcaaWdaeaapeGa am4DaaWdaeaapeGaamiAaaaaaiaawIcacaGLPaaapaWaaWbaaSqabe aapeGaaiOlaiaaisdacaaI0aaaaOGaaiiOaiaacckacaGGGcGaaiiO aiaabAgacaqGVbGaaeOCaiaacckadaWcaaWdaeaapeGaam4DaaWdae aapeGaamiAaaaacqGH8aapcaaIWaGaaiOlaiaaiwdacaGGGcaaaa@67C6@
    m m = 0.       for   w h > 0.5   and   m m = .76       for   w h < 0.5   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaamyBaiabg2da9iaaicdacaGGUaGaaiiOaiaacckacaGG GcGaaeOzaiaab+gacaqGYbGaaiiOamaalaaapaqaa8qacaWG3baapa qaa8qacaWGObaaaiabg6da+iaaicdacaGGUaGaaGynaiaacckacaqG HbGaaeOBaiaabsgacaGGGcGaamyBaiaad2gacqGH9aqpcqGHsislca GGUaGaaG4naiaaiAdacaGGGcGaaiiOaiaacckacaqGMbGaae4Baiaa bkhacaGGGcWaaSaaa8aabaWdbiaadEhaa8aabaWdbiaadIgaaaGaey ipaWJaaGimaiaac6cacaaI1aGaaiiOaaaa@6030@
    c = .044   α 1.72       for   α > 80   and   c = 1.8       for   α < 80   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGJbGaeyypa0JaaiOlaiaaicdacaaI0aGaaGinaiaacckacqaH XoqycqGHsislcaaIXaGaaiOlaiaaiEdacaaIYaGaaiiOaiaacckaca GGGcGaaeOzaiaab+gacaqGYbGaaiiOaiabeg7aHjabg6da+iaaiIda caaIWaGaaiiOaiaabggacaqGUbGaaeizaiaacckacaWGJbGaeyypa0 JaaGymaiaac6cacaaI4aGaaiiOaiaacckacaGGGcGaaeOzaiaab+ga caqGYbGaaiiOaiabeg7aHjabgYda8iaaiIdacaaIWaGaaiiOaaaa@62CF@

    For 1<w/h<4 (ref 5)

    m = .35       for   α 80 ,     m = 3.15 .035 * α           for     α 80   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGTbGaeyypa0JaaiOlaiaaiodacaaI1aGaaiiOaiaacckacaGG GcGaaeOzaiaab+gacaqGYbGaaiiOaiabeg7aHnaaamaapaqaa8qaca aI4aGaaGimaiaacYcacaGGGcGaaiiOaiaad2gacqGH9aqpcaaIZaGa aiOlaiaaigdacaaI1aGaeyOeI0IaaiOlaiaaicdacaaIZaGaaGynai aacQcacqaHXoqycaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaabAga caqGVbGaaeOCaiaacckacaGGGcGaeqySdegacaGLPmIaayPkJaGaaG ioaiaaicdacaGGGcaaaa@63AE@
    n = 0.35 ,     m m = 0.1 ,       c = 2.24 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGimaiaac6cacaaIZaGaaGynaiaacYcacaGG GcGaaiiOaiaad2gacaWGTbGaeyypa0JaaGimaiaac6cacaaIXaGaai ilaiaacckacaGGGcGaaiiOaiaadogacqGH9aqpcaaIYaGaaiOlaiaa ikdacaaI0aaaaa@4BF4@
    G t e r m = 1.0        for    w h > 1.0       and     G t e r m = α 90   .35 P 10   e 0.1   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGhbWdamaaBaaaleaapeGaamiDaiaadwgacaWGYbGaamyBaaWd aeqaaOWdbiabg2da9iaaigdacaGGUaGaaGimaiaacckacaGGGcGaai iOaiaabckacaqGMbGaae4BaiaabkhacaqGGcGaaiiOamaalaaapaqa a8qacaWG3baapaqaa8qacaWGObaaaiabg6da+iaaigdacaGGUaGaaG imaiaacckacaGGGcGaaiiOaiaabggacaqGUbGaaeizaiaacckacaGG GcGaam4ra8aadaWgaaWcbaWdbiaadshacaWGLbGaamOCaiaad2gaa8 aabeaak8qacqGH9aqpdaqadaWdaeaapeWaaSaaa8aabaWdbiabeg7a HbWdaeaapeGaaGyoaiaaicdaaaGaaiiOaaGaayjkaiaawMcaa8aada ahaaWcbeqaa8qacaGGUaGaaG4maiaaiwdaaaGcdaqadaWdaeaapeWa aSaaa8aabaWdbiaadcfaa8aabaWdbiaaigdacaaIWaGaaiiOaiaadw gaaaaacaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaicdacaGGUaGa aGymaaaakiaacckaaaa@6E88@

    Limits:

    0.02 < e D h < 0.078 ,           10 < P e < 20 ,         .25 < W H < 4 ,         3000 < R e < 60 , 000 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIWaGaaiOlaiaaicdacaaIYaGaeyipaWZaaSaaa8aabaWdbiaa dwgaa8aabaWdbiaadseapaWaaSbaaSqaa8qacaWGObaapaqabaaaaO WdbiabgYda8iaaicdacaGGUaGaaGimaiaaiEdacaaI4aGaaiilaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaGymaiaaicdacqGH8aapda WcaaWdaeaapeGaamiuaaWdaeaapeGaamyzaaaacqGH8aapcaaIYaGa aGimaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaiOlaiaaikdaca aI1aGaeyipaWZaaSaaa8aabaWdbiaadEfaa8aabaWdbiaadIeaaaGa eyipaWJaaGinaiaacYcacaGGGcGaaiiOaiaacckacaGGGcGaaG4mai aaicdacaaIWaGaaGimaiabgYda8iaadkfacaWGLbGaeyipaWJaaGOn aiaaicdacaGGSaGaaGimaiaaicdacaaIWaaaaa@6BE7@

    Where:

    R e = m   ˙ D h A r e a   μ = a x i a l   R e y n o l d s   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbGaamyzaiabg2da9maalaaapaqaamaaxacabaWdbiaad2ga caGGGcaal8aabeqaa8qacaGGzlaaaOGaamira8aadaWgaaWcbaWdbi aadIgaa8aabeaaaOqaa8qacaWGbbGaamOCaiaadwgacaWGHbGaaiiO aiabeY7aTbaacqGH9aqpcaWGHbGaamiEaiaadMgacaWGHbGaamiBai aacckacaWGsbGaamyzaiaadMhacaWGUbGaam4BaiaadYgacaWGKbGa am4CaiaacckacaWGobGaamyDaiaad2gacaWGIbGaamyzaiaadkhaaa a@5A7B@
    D h = h y d r a u l i c   d i a m e t e r         P = r i b   p i t c h ,     e = r i b   h e i g h t   a n d   w i d t h ,     α = r i b   a n g l e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGebWdamaaBaaaleaapeGaamiAaaWdaeqaaOWdbiabg2da9iaa dIgacaWG5bGaamizaiaadkhacaWGHbGaamyDaiaadYgacaWGPbGaam 4yaiaacckacaWGKbGaamyAaiaadggacaWGTbGaamyzaiaadshacaWG LbGaamOCaiaacckacaGGGcGaaiiOaiaacckacaWGqbGaeyypa0Jaam OCaiaadMgacaWGIbGaaiiOaiaadchacaWGPbGaamiDaiaadogacaWG ObGaaiilaiaacckacaGGGcGaamyzaiabg2da9iaadkhacaWGPbGaam OyaiaacckacaWGObGaamyzaiaadMgacaWGNbGaamiAaiaadshacaGG GcWaaeWaa8aabaWdbiaadggacaWGUbGaamizaiaacckacaWG3bGaam yAaiaadsgacaWG0bGaamiAaaGaayjkaiaawMcaaiaacYcacaGGGcGa aiiOaiabeg7aHjabg2da9iaadkhacaWGPbGaamOyaiaacckacaWGHb GaamOBaiaadEgacaWGSbGaamyzaaaa@8164@
      w = r e c t a n g l e   s i d e   w a l l   l e n g t h   w i t h   r i b s ,     h = r e c t a n g l e   s i d e   w a l l   l e n g t h   s m o o t h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGGcGaam4Daiabg2da9iaadkhacaWGLbGaam4yaiaadshacaWG HbGaamOBaiaadEgacaWGSbGaamyzaiaacckacaWGZbGaamyAaiaads gacaWGLbGaaiiOaiaadEhacaWGHbGaamiBaiaadYgacaGGGcGaamiB aiaadwgacaWGUbGaam4zaiaadshacaWGObGaaiiOaiaadEhacaWGPb GaamiDaiaadIgacaGGGcGaamOCaiaadMgacaWGIbGaam4CaiaacYca caGGGcGaaiiOaiaadIgacqGH9aqpcaWGYbGaamyzaiaadogacaWG0b Gaamyyaiaad6gacaWGNbGaamiBaiaadwgacaGGGcGaam4CaiaadMga caWGKbGaamyzaiaacckacaWG3bGaamyyaiaadYgacaWGSbGaaiiOai aadYgacaWGLbGaamOBaiaadEgacaWG0bGaamiAaiaacckacaWGZbGa amyBaiaad+gacaWGVbGaamiDaiaadIgaaaa@80B7@
    e + = e D h   R e   f 2 = r o u g h n e s s   R e y n o l d s   N u m b e r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbWdamaaCaaaleqabaWdbiabgUcaRaaakiabg2da9maalaaa paqaa8qacaWGLbaapaqaa8qacaWGebWdamaaBaaaleaapeGaamiAaa Wdaeqaaaaak8qacaGGGcGaamOuaiaadwgacaGGGcWaaOaaa8aabaWd bmaalaaapaqaa8qacaWGMbaapaqaa8qacaaIYaaaaaWcbeaakiabg2 da9iaadkhacaWGVbGaamyDaiaadEgacaWGObGaamOBaiaadwgacaWG ZbGaam4CaiaacckacaWGsbGaamyzaiaadMhacaWGUbGaam4BaiaadY gacaWGKbGaam4CaiaacckacaWGobGaamyDaiaad2gacaWGIbGaamyz aiaadkhaaaa@5BBC@
    N u = S t * P r * R e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobGaamyDaiabg2da9iaadofacaWG0bGaaiOkaiaadcfacaWG YbGaaiOkaiaadkfacaWGLbaaaa@3FA5@
    H T C = N u * k D h   w h e r e   k = f l u i d   c o n d u c t i v i t y   a t   f i l m   t e m p e r a t u r e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibGaamivaiaadoeacqGH9aqpdaWcaaWdaeaapeGaamOtaiaa dwhacaGGQaGaam4AaaWdaeaapeGaamira8aadaWgaaWcbaWdbiaadI gaa8aabeaaaaGcpeGaaiiOaiaadEhacaWGObGaamyzaiaadkhacaWG LbGaaiiOaiaadUgacqGH9aqpcaWGMbGaamiBaiaadwhacaWGPbGaam izaiaacckacaWGJbGaam4Baiaad6gacaWGKbGaamyDaiaadogacaWG 0bGaamyAaiaadAhacaWGPbGaamiDaiaadMhacaGGGcGaamyyaiaads hacaGGGcGaamOzaiaadMgacaWGSbGaamyBaiaacckacaWG0bGaamyz aiaad2gacaWGWbGaamyzaiaadkhacaWGHbGaamiDaiaadwhacaWGYb Gaamyzaaaa@6CFF@

Table 2. Outputs List
Index .flo Label Description
1 TNET Thermal network ID which has the convector where this correlation is used.
2 CONV_ID Convector ID which is using this correlation.
3 FLOW_ELM Flow element from input 1 or automatically selected.
4 FLOW Mass flow rate used in the Re calculation.
5 HYD_DIA The hydraulic diameter used in the HTC calculations.
6 PTCH/HGHT Rib pitch/rib height.
7 HGHT/H_DIA Rib height/hydraulic diameter.
8 PTCH/H_DIA Rib pitch/hydraulic diameter.
9 FRIC_FANNING Fanning friction factor.
10 INLET_HMULT HTC multiplier due to inlet effects.
11 RE Axial Reynolds number.
12 NU Calculated Nusselt number.
13 HTC Calculated Heat Transfer Coefficient.

Heat Transfer Correlation References

  1. Webb, R. L., Eckert, E. R. G., and Goldstein, R. J. "Heat Transfer and Friction in Tubes with Repeated-Rib Roughness", Int. Journal of Heat and Mass Transfer, 14 (1971).
  2. Ravigururajan, T.S., "General correlations for pressure drop and heat transfer for single-phase turbulent flows in ribbed tubes", Iowa State Univ, Thesis, 1986.
  3. Han J.C., "Heat Transfer and Friction Characteristics in Rectangular Channels with Rib Turbulators", Journal of Heat Transfer, ASME (1988).
  4. Han, J. C., Ou, S., Park, J. S. and Lei, C. K. " Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios with Rib Turbulators" , International Journal of Heat Mass Transfer, 32, (1989).
  5. Han, J. C. and Park, J. S. "Developing Heat Transfer in Rectangular Channels with Rib Turbulators", International Journal of Heat Mass Transfer, 31, (1988).