/LOAD/PFLUID

Block Format Keyword This entry provides a simple way to simulate hydrodynamic fluid pressure on a structure. The fluid pressure is calculated according to the specified fluid velocity, orientation of the structural surface against the fluid vector and the height of the fluid column above the surface of the structure.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/LOAD/PFLUID/load_ID/unit_ID
load_title
surf_ID sens_ID                
fct_hsp   Ascalex_hsp Fscaley_hsp        
Dir_hsp frahsp_ID                
fct_pc   Ascalex_pc Fscaley_pc        
fct_vel   Ascalex_vel Fscaley_vel        
Dir_vel fravel_ID                

Definition

Field Contents SI Unit Example
load_ID Load block identifier.

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier.

(Integer, maximum 10 digits)

 
load_title Load block title.

(Character, maximum 100 characters)

 
surf_ID Surface identifier.

(Integer)

 
sens_ID Sensor identifier.

(Integer)

 
fct_hsp Hydro-static pressure as a function of the fluid column height above the structural surface.

(Integer)

 
Ascalex_hsp Abscissa scale factor for fct_hsp.

Default = 1.0 (Real)

[ s ]
Fscaley_hsp Ordinate scale factor for fct_hsp.

Default = 1.0 (Real)

[ Pa ]
Dir_hsp Vertical (gravitational) direction of the water column above the structural surface (input X, Y or Z).

(Text)

 
frahsp_ID Frame identifier for the vertical (gravitational) direction of the water column above the structural surface.

(Integer)

 
fct_pc Hydrodynamic drag coefficient as a function of time. 4

(Integer)

 
Ascalex_pc Abscissa scale factor for fct_pc.

Default = 1.0 (Real)

[ s ]
Fscaley_pc Ordinate scale factor for fct_pc.

Default = 1.0 (Real)

[ kg m 3 ]
fct_vel Fluid velocity as a function of time.

(Integer)

 
Ascalex_vel Abscissa scale factor for fct_vel.

Default = 1.0 (Real)

[ s ]
Fscaley_vel Ordinate scale factor for fct_vel.

Default = 1.0 (Real)

[ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@
Dir_vel Direction of fluid velocity (input X, Y or Z).

(Text)

 
fravel_ID Frame identifier for the fluid velocity direction.

(Integer)

 

Example (Wind Effect)

In this example, /LOAD/PFLUID is used to simulate wind (with velocity 15[mm/ms]) effect on textile.

load_pfluid_example
Figure 1.
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for load
#              MUNIT               LUNIT               TUNIT
                 kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/LOAD/PFLUID/1/1
Wind effect
#  surf_ID   sens_ID
         8         0
#  fct_hsp                   Ascalex_hsp         Fscaley_hsp
         0                             0                   0
#  Dir_hsp frahsp_ID
                   0
#   fct_pc                    Ascalex_pc          Fscaley_pc
         2                             0                   2
#  fct_vel                   Ascalex_vel         Fscaley_vel
         3                             0                  15
#  Dir_vel fravel_ID
         Y         0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
Air density
#                  X                   Y
                   0              1.2E-9
                1000              1.2E-9
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/3
Air velocity
#                  X                   Y
                   0                   1
                1000                   1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA

Comments

  1. The fluid pressure applied to each element of the structural surface is computed as:(1)
    P = ρ g h + V 2 ( t ) ( ρ D ( t ) ) 2
    Where,
    ρ
    Fluid density
    g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E2@
    Acceleration due to gravity
    h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@36E2@
    Height of the water column above an element of the structural surface
    V ( t )
    Relative fluid velocity which is normal to the element of the structural surface
    D ( t )
    Drag coefficient for complete structural surface
    The value of the drag coefficient depends on the shape of the cross-section of the body in the direction of fluid flow (Figure 2).

    measured_drag_coefficients
    Figure 2. Drag Coefficient Values for Different Shapes
  2. The value of hydrostatic pressure ( ρ g h ) as a function of fluid column height ( h ) above the structural surface is stated using the function fct_hsp. If this is not defined (=0), the effect is not accounted for (fct_hsp(altitude)=0).
  3. Hydrodynamic pressure is calculated with respect to the relative orientation of the fluid vector and the element normal.(2)
    V ( t ) = | ( ( V f l u i d V e l e m e n t ) , n ) |
    Where,
    V f l u i d
    Specified fluid velocity (fct_vel(t)). If not defined (=0), the effect of fluid velocity is not accounted for ( V ( t ) = 0)
    V e l e m e n t
    Element velocity
    n
    Element normal
  4. fct_pc defines the value of ρD(t) as a function of time. If this is not defined, the effect of fluid velocity is not accounted for.