Ityp = 0
Block Format Keyword This law enables to model a gas inlet condition by providing data from stagnation point. Gas is supposed to be a perfect gas.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW11/mat_ID/unit_ID or /MAT/BOUND/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
Ityp | Psh | FscaleT |
Ityp = 0 - Gas Inlet (from stagnation point data)
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
node_IDV | C1 | Cd | |||||||
fct_IDp | |||||||||
Blank Format | |||||||||
Blank Format | |||||||||
fct_IDT | fct_IDQ |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material
identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit identifier. (Integer, maximum 10 digits) |
|
mat_title | Material
title. (Character, maximum 100 characters) |
|
Initial stagnation
density. 3 (Real) |
||
Reference density used in
E.O.S (equation of state). Default (Real) |
||
Ityp | Boundary condition type.
1
(Integer) |
|
Psh | Pressure shift. 2 (Real) |
|
FscaleT | Time scale factor. 3 (Real) |
|
node_IDV | Node identifier for velocity computation. 4
(Integer) |
|
Perfect gas
constant. (Real) |
||
Cd | Discharge coefficient.
5 (Real) |
|
fct_ID | Function
identifier for stagnation
density. 3
(Integer) |
|
fct_IDp | Function
identifier for stagnation
pressure. 3
(Integer) |
|
Initial stagnation
pressure. 3 (Real) |
||
fct_IDT | Function
identifier for inlet
temperature. 3
6
(Integer) |
|
fct_IDQ | Function
identifier for inlet heat
flux. 3
6
(Integer) |
Comments
- Provided gas state from
stagnation point
is used to compute inlet gas state.
A set of equations including Total Enthalpy formulation, Adiabatic Law and Equation of State allows for the complete definition of the inlet state:
- The Psh parameter enables shifting the output pressure which also becomes P-Psh. If using Psh=P(t=0), the output pressure will be , with an initial value of 0.0.
- If no function is defined, then related quantity remains constant and set to its initial value. However, all input quantities can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f (Fscalet * t) instead of f(t).
- Inlet velocity is used in Bernoulli theory.
- Discharge coefficient accounts
for entry loss and depends on shape orifice.
- With thermal modeling, all thermal data ( , ...) can be defined with /HEAT/MAT.
- It is not possible to use this boundary material law with multi-material ALE laws 37 (/MAT/LAW37 (BIPHAS)) and 51 (/MAT/LAW51 (MULTIMAT)).