Ityp = 0

Block Format Keyword This law enables to model a gas inlet condition by providing data from stagnation point. Gas is supposed to be a perfect gas.


law11_ityp0
Figure 1.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW11/mat_ID/unit_ID or /MAT/BOUND/mat_ID/unit_ID
mat_title
ρstagnationiρstagnationi ρstagnation0ρstagnation0
Ityp Psh FscaleT
Ityp = 0 - Gas Inlet (from stagnation point data)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
node_IDV C1 Cd
fct_IDρfct_IDρ
fct_IDp Pstagnation0Pstagnation0
Blank Format
Blank Format
fct_IDT fct_IDQ

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Unit identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρstagnationiρstagnationi Initial stagnation density. 3

(Real)

[kgm3][kgm3]
ρstagnation0ρstagnation0 Reference density used in E.O.S (equation of state).

Default ρstagnation0=ρstagnationiρstagnation0=ρstagnationi (Real)

[kgm3][kgm3]
Ityp Boundary condition type. 1
= 0
Gas inlet (from stagnation point data)
= 1
Liquid inlet (from stagnation point data)
= 2
General inlet/outlet
= 3
Non-reflecting boundary

(Integer)

Psh Pressure shift. 2

(Real)

[Pa][Pa]
FscaleT Time scale factor. 3

(Real)

[s][s]
node_IDV Node identifier for velocity computation. 4
= 0
vin=minnodeεfacevnodenvin=minnodeεfacevnoden
> 0
vin=vnode_IDvin=vnode_ID

(Integer)

γγ Perfect gas constant.

(Real)

Cd Discharge coefficient. 5

(Real)

fct_ID ρρ Function fρ(t)fρ(t) identifier for stagnation density. 3
= 0
ρstagnation(t)=ρstagnationiρstagnation(t)=ρstagnationi
> 0
ρstagnation(t)=ρstagnationifρ(t)ρstagnation(t)=ρstagnationifρ(t)

(Integer)

fct_IDp Function fP(t)fP(t) identifier for stagnation pressure. 3
= 0
Pstagnation(t)=Pstagnation0Pstagnation(t)=Pstagnation0
> 0
Pstagnation(t)=Pstagnation0fP(t)Pstagnation(t)=Pstagnation0fP(t)

(Integer)

Pstagnation0Pstagnation0 Initial stagnation pressure. 3

(Real)

[Pa][Pa]
fct_IDT Function fT(t)fT(t) identifier for inlet temperature. 3 6
= 0
T=TadjacentT=Tadjacent
= n
T=T0fT(t)T=T0fT(t)

(Integer)

fct_IDQ Function fQ(t)fQ(t) identifier for inlet heat flux. 3 6
= 0
No imposed flux
= n
Q=fQ(t)Q=fQ(t)

(Integer)

Comments

  1. Provided gas state from stagnation point (ρstagnation,Pstagnation)(ρstagnation,Pstagnation) is used to compute inlet gas state.

    A set of equations including Total Enthalpy formulation, Adiabatic Law and Equation of State allows for the complete definition of the inlet state:

    ρin=ρstagnation[1γ12γρstagnationPstagnation(1+Cd)v2in]1γ1Pin=Pstagnation(ρinρstagnation)γ(ρe)in=Pinγ1

  2. The Psh parameter enables shifting the output pressure which also becomes P-Psh. If using Psh=P(t=0), the output pressure will be ΔP , with an initial value of 0.0.
  3. If no function is defined, then related quantity (Pstagnation,ρstagnation,T,orQ) remains constant and set to its initial value. However, all input quantities (Pstagnation,ρstagnation,T,andQ) can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f (Fscalet * t) instead of f(t).
  4. Inlet velocity vin is used in Bernoulli theory.
  5. Discharge coefficient accounts for entry loss and depends on shape orifice.

    mat_bound_sharpedge
    Figure 2.
  6. With thermal modeling, all thermal data ( T0,ρ0CP , ...) can be defined with /HEAT/MAT.
  7. It is not possible to use this boundary material law with multi-material ALE laws 37 (/MAT/LAW37 (BIPHAS)) and 51 (/MAT/LAW51 (MULTIMAT)).