Ityp = 1
Block Format Keyword This law enables to model a liquid inlet condition by providing data from stagnation point. Liquid behavior is modeled with linear EOS.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/MAT/LAW11/mat_ID/unit_ID or /MAT/BOUND/mat_ID/unit_ID  
mat_title  
${\rho}_{i}^{\mathit{stagnation}}$  ${\rho}_{0}^{\mathit{stagnation}}$  
Ityp  P_{sh}  Fscale_{T} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

node_ID_{V}  C_{1}  C_{d}  
$\mathit{fct}\_{\mathit{ID}}_{\rho}$  
fct_ID_{p}  ${P}_{0}^{\mathit{stagnation}}$  
fct_ID_{E}  ${E}_{0}^{\mathit{stagnation}}$  
Blank Format  
Blank Format  
fct_ID_{T}  fct_ID_{Q} 
Definition
Field  Contents  SI Unit Example 

mat_ID  Material
identifier. (Integer, maximum 10 digits) 

unit_ID  Unit Identifier. (Integer, maximum 10 digits) 

mat_title  Material
title. (Character, maximum 100 characters) 

${\rho}_{i}^{\mathit{stagnation}}$  Initial stagnation
density. 3 (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$ 
${\rho}_{0}^{\mathit{stagnation}}$  Reference density used in
E.O.S (equation of state). Default ${\rho}_{0}^{\mathit{stagnation}}={\rho}_{\mathrm{i}}^{\mathit{stagnation}}$ (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$ 
Ityp  Boundary condition type.
1
(Integer) 

P_{sh}  Pressure shift. 2 (Real) 
$\left[\text{Pa}\right]$ 
Fscale_{T}  Time scale factor. 3 (Real) 
$\left[\text{s}\right]$ 
node_ID_{V}  Node identifier for velocity computation. 4
(Integer) 

C_{1}  Liquid bulk modulus. 9 (Real) 

C_{d}  Discharge coefficient.
5 Default = 0.0 (Real) 

fct_ID $\rho $  Function
${f}_{\rho}(t)$
identifier for stagnation
density. 3
(Integer) 

fct_ID_{p}  Function
${f}_{P}(t)$
identifier for stagnation
pressure. 3
(Integer) 

${P}_{0}^{\mathit{stagnation}}$  Initial stagnation
pressure. 3 (Real) 
$\left[\text{Pa}\right]$ 
fct_ID_{E}  Function
${f}_{E}(t)$
identifier for stagnation
density. 3
(Integer) 

${E}_{0}^{\mathit{stagnation}}$  Initial specific volume
energy at stagnation point. 3
8 (Real) 
$\left[\text{Pa}\right]$ 
fct_ID_{T}  Function
${f}_{T}(t)$
identifier for inlet
temperature. 3
6
(Integer) 

fct_ID_{Q}  Function
${f}_{Q}(t)$
identifier for inlet heat
flux. 3
6
(Integer) 
Comments
 Provided gas
state from stagnation point
$\left({\rho}_{\mathit{stagnation},\text{\hspace{0.17em}}}{P}_{\mathit{stagnation}}\right)$
is used to compute inlet gas state. Bernoulli is
then applied.$${P}_{\mathit{stagnation}}={P}_{\mathit{in}}+\frac{{\rho}_{\mathit{in}}{v}_{\mathit{in}}^{2}}{2}$$
This leads to inlet state:
$$\begin{array}{l}{\rho}_{\mathit{in}}=\frac{{C}_{1}\cdot {\rho}_{\mathit{stagnation}}}{{C}_{1}+\frac{{\rho}_{\mathit{stagnation}}{v}_{\mathit{in}}^{2}}{2}(1+{C}_{d})}\\ {P}_{\mathit{in}}={P}_{\mathit{stagnation}}\frac{{\rho}_{\mathit{stagnation}}{v}_{\mathit{in}}^{2}}{2}(1+{C}_{d})\\ {(\rho e)}_{\mathit{in}}=\left(1\frac{{\rho}_{\mathit{in}}}{{\rho}_{\mathit{stagnation}}}\right){P}_{\mathit{in}}+{E}_{\mathit{stagnation}}\end{array}$$  The P_{sh} parameter enables shifting the output pressure, which also becomes PP_{sh}. If using P_{sh}=P(t=0), the output pressure will be $\text{\Delta}P$ , with an initial value of 0.0.
 If no function is defined, then related quantity $\left({P}_{\mathit{stagnation}},\text{\hspace{0.17em}}{\rho}_{\mathit{stagnation}},\text{\hspace{0.17em}}T,\text{\hspace{0.17em}}\mathit{or}\text{\hspace{0.17em}}Q\right)$ remains constant and set to its initial value. However, all input quantities $\left({P}_{\mathit{stagnation}},\text{\hspace{0.17em}}{\rho}_{\mathit{stagnation}},\text{\hspace{0.17em}}T,\text{\hspace{0.17em}}\mathit{and}\text{\hspace{0.17em}}Q\right)$ can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using Fscale_{T} parameter which leads to use f (Fscale_{t} * t) instead of f(t).
 Inlet velocity ${v}_{\mathit{in}}$ is used in Bernoulli theory.
 Discharge coefficient accounts for
entry loss and depends on shape orifice.
 With thermal modeling, all thermal data ( ${T}_{0},\text{\hspace{0.17em}}{\rho}_{0}{C}_{P}$ , ...) can be defined with /HEAT/MAT.
 It is not possible to use this boundary material law with multimaterial ALE laws 37 (/MAT/LAW37 (BIPHAS)) and 51 (/MAT/LAW51 (MULTIMAT)).
 Definition of stagnation energy is
optional. Default value recommended:
${E}_{0}^{\mathit{stagnation}}=0.0$
; since linear EOS
$\text{\Delta}P={C}_{1}\mu $
does not depends on energy pressure is not
affected and the initial energy is also set by you.
Specific volume energy E is defined as $E=\raisebox{1ex}{${E}_{\mathrm{int}}$}\!\left/ \!\raisebox{1ex}{$V$}\right.$ , where ${E}_{\mathrm{int}}$ is the internal energy. It can be output using /TH/BRIC.
Specific mass energy e is defined as $e=\raisebox{1ex}{${E}_{\mathrm{int}}$}\!\left/ \!\raisebox{1ex}{$m$}\right.$ . This leads to $\rho \text{\hspace{0.17em}}e=E$ . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.
 Liquid bulk modulus is usually set to ${C}_{1}={\rho}_{0}{c}_{0}^{2}$ , where ${c}_{0}$ is sound speed.