Ityp = 2
Block Format Keyword This law enables to model a material inlet/outlet by directly imposing its state.
Format
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

/MAT/LAW11/mat_ID/unit_ID or /MAT/BOUND/mat_ID/unit_ID  
mat_title  
${\rho}_{i}$  ${\rho}_{0}$  
Ityp  P_{sh}  Fscale_{T} 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10) 

Blank Format  
$\mathit{fct}\_{\mathit{ID}}_{\rho}$  
fct_ID_{p}  P_{0}  
fct_ID_{E}  E_{0}  
Blank Format  
Blank Format  
fct_ID_{T}  fct_ID_{Q} 
Definition
Field  Contents  SI Unit Example 

mat_ID  Material identifier (Integer, maximum 10 digits) 

unit_ID  Unit Identifier. (Integer, maximum 10 digits) 

mat_title  Material title (Character, maximum 100 characters) 

${\rho}_{i}$  Initial density 3 (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$ 
${\rho}_{0}$  Reference density used in E.O.S
(equation of state) Default ${\rho}_{0}={\rho}_{i}$ (Real) 
$\left[\frac{\text{kg}}{{\text{m}}^{\text{3}}}\right]$ 
Ityp  Boundary condition type 1
(Integer) 

P_{sh}  Pressure shift 2 (Real) 
$\left[\text{Pa}\right]$ 
Fscale_{v}  Time scale
factor
3 (Real) 
$\left[\text{s}\right]$ 
fct_ID $\rho $  Function
${f}_{\rho}(t)$
identifier for boundary density
3
(Integer) 

fct_ID_{p}  Function
${f}_{P}(t)$
identifier for boundary pressure
3
(Integer) 

${P}_{0}$  Initial pressure 3 (Real) 
$\left[\text{Pa}\right]$ 
fct_ID_{E}  Function
${f}_{E}\left(t\right)$
identifier for boundary density
3
(Integer) 

${E}_{0}$  Initial energy 3
6 (Real) 
$\left[\text{Pa}\right]$ 
fct_ID_{T}  Function
${f}_{T}(t)$
identifier for boundary temperature
3
4
(Integer) 

fct_ID_{Q}  Function
${f}_{Q}(t)$
identifier for boundary heat flux
3
4
(Integer) 
Comments
 Provided state is directly imposed to inlet
boundary elements. This leads to the following inlet state:$$\begin{array}{l}{\rho}_{in}={\rho}_{i}{f}_{\rho}(t)\\ {P}_{in}={P}_{0}{f}_{P}(t)\\ {P}_{in}={P}_{0}{f}_{P}(t)\\ {E}_{in}={(\rho e)}_{in}={E}_{0}{f}_{E}(t)\end{array}$$
With this formulation, you may impose velocity on boundary nodes to be consistent with physical inlet velocity (/IMPVEL). /MAT/LAW11  ITYP=0 and 1, are based on material state from stagnation point, where you do not need to imposed an inlet velocity.
 The P_{sh} parameter enables shifting the output pressure which also becomes PP_{sh}. If using P_{sh}=P(t=0), the output pressure will be $\text{\Delta}P$ , with an initial value of 0.0.
 If no function is defined, then related quantity $\left({P}_{\mathit{stagnation}},\text{\hspace{0.17em}}{\rho}_{\mathit{stagnation}},\text{\hspace{0.17em}}T,\text{\hspace{0.17em}}\mathit{or}\text{\hspace{0.17em}}Q\right)$ remains constant and set to its initial value. However, all input quantities $\left({P}_{\mathit{stagnation}},\text{\hspace{0.17em}}{\rho}_{\mathit{stagnation}},\text{\hspace{0.17em}}T,\text{\hspace{0.17em}}\mathit{and}\text{\hspace{0.17em}}Q\right)$ can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using Fscale_{T} parameter which leads to use f (Fscale_{t} * t) instead of f(t).
 With thermal modeling, all thermal data ( ${T}_{0},\text{\hspace{0.17em}}{\rho}_{0}{C}_{P}$ , ...) can be defined with /HEAT/MAT.
 It is not possible to use this boundary material law with multimaterial ALE laws 37 (/MAT/LAW37 (BIPHAS)) and 51 (/MAT/LAW51 (MULTIMAT)).
 Specific volume energy
E is defined as
$E=\raisebox{1ex}{${E}_{\mathrm{int}}$}\!\left/ \!\raisebox{1ex}{$V$}\right.$
, where
${E}_{\mathrm{int}}$
is the internal energy. It can be output using
/TH/BRIC.
Specific mass energy e is defined as $e=\raisebox{1ex}{${E}_{\mathrm{int}}$}\!\left/ \!\raisebox{1ex}{$m$}\right.$ . This leads to $\rho \text{\hspace{0.17em}}e=E$ . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.