Ityp = 2

Block Format Keyword This law enables to model a material inlet/outlet by directly imposing its state.

Figure 1.

law11_ityp0

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW11/mat_ID/unit_ID or /MAT/BOUND/mat_ID/unit_ID
mat_title
ρi ρ0
Ityp Psh FscaleT
Ityp = 2 - General Inlet/Outlet
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Blank Format
fct _ ID ρ
fct_IDp P0
fct_IDE E0
Blank Format
Blank Format
fct_IDT fct_IDQ

Definition

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

mat_title Material title

(Character, maximum 100 characters)

ρ i Initial density 3

(Real)

[ kg m 3 ]
ρ 0 Reference density used in E.O.S (equation of state)

Default ρ 0 = ρ i (Real)

[ kg m 3 ]
Ityp Boundary condition type 1
= 0
Gas inlet (from stagnation point data)
= 1
Liquid inlet (from stagnation point data)
= 2
General inlet/outlet
= 3
Non-reflecting boundary

(Integer)

Psh Pressure shift 2

(Real)

[ Pa ]
Fscalev Time scale factor 3

(Real)

[ s ]
fct_ID ρ Function f ρ ( t ) identifier for boundary density 3
= 0
ρ ( t ) = ρ i
> 0
ρ ( t ) = ρ i f ρ ( t )

(Integer)

fct_IDp Function f P ( t ) identifier for boundary pressure 3
= 0
P ( t ) = P 0
> 0
P ( t ) = P 0 f P ( t )

(Integer)

P 0 Initial pressure 3

(Real)

[ Pa ]
fct_IDE Function f E ( t ) identifier for boundary density 3
= 0
E ( t ) = E 0
> 0
E ( t ) = E 0 f E ( t )

(Integer)

E 0 Initial energy 3 6

(Real)

[ Pa ]
fct_IDT Function f T ( t ) identifier for boundary temperature 3 4
= 0
T = Tadjacent
= n
T = T 0 f T ( t )

(Integer)

fct_IDQ Function f Q ( t ) identifier for boundary heat flux 3 4
= 0
No imposed flux
= n
Q = f Q ( t )

(Integer)

Comments

  1. Provided state is directly imposed to inlet boundary elements. This leads to the following inlet state:

    ρ i n = ρ i f ρ ( t ) P i n = P 0 f P ( t ) P i n = P 0 f P ( t ) E i n = ( ρ e ) i n = E 0 f E ( t )

    With this formulation, you may impose velocity on boundary nodes to be consistent with physical inlet velocity (/IMPVEL). /MAT/LAW11 - ITYP=0 and 1, are based on material state from stagnation point, where you do not need to imposed an inlet velocity.

  2. The Psh parameter enables shifting the output pressure which also becomes P-Psh. If using Psh=P(t=0), the output pressure will be Δ P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc faaaa@37E5@ , with an initial value of 0.0.
  3. If no function is defined, then related quantity ( P stagnation , ρ stagnation , T , or Q ) remains constant and set to its initial value. However, all input quantities ( P stagnation , ρ stagnation , T , and Q ) can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f (Fscalet * t) instead of f(t).
  4. With thermal modeling, all thermal data ( T 0 , ρ 0 C P , ...) can be defined with /HEAT/MAT.
  5. It is not possible to use this boundary material law with multi-material ALE laws 37 (/MAT/LAW37 (BIPHAS)) and 51 (/MAT/LAW51 (MULTIMAT)).
  6. Specific volume energy E is defined as E = E int V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9maaliaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqa aaGcbaGaamOvaaaaaaa@3C8D@ , where E int MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaaciGGPbGaaiOBaiaacshaaeqaaaaa@39C6@ is the internal energy. It can be output using /TH/BRIC.

    Specific mass energy e is defined as e = E int m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyzaiabg2 da9maaliaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqa aaGcbaGaamyBaaaaaaa@3CC4@ . This leads to ρ e = E . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.