Ityp = 3

Block Format Keyword This law enables to model a non-reflecting boundary (NRF). Input card is similar to /MAT/LAW11 (BOUND), but introduces two new lines to define turbulence parameters.


law11_ityp3

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/B-K-EPS/mat_ID/unit_ID
mat_title
ρ i ρ 0
Ityp Psh
Ityp =3: Non-Reflecting Boundary
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
c l c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGJbaabeaaaaa@37FB@
Blank Format
Blank Format
Blank Format
ρ 0 κ 0 ρ 0 ε 0 fct_IDk fct_IDe
C μ σ κ σ ε P r / P r t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGYbaabeaakiaad+cacaWGqbWaaSbaaSqaaiaadkhacaWG 0baabeaaaaa@3B9E@
Blank Format

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i Initial density. 3

(Real)

[ kg m 3 ]
ρ 0 Reference density used in E.O.S (equation of state).

Default ρ 0 = ρ i (Real)

[ kg m 3 ]
Ityp Boundary condition type. 1
= 0
Gas inlet (from stagnation point data)
= 1
Liquid inlet (from stagnation point data)
= 2
General inlet/outlet
= 3
Non-reflecting boundary

(Integer)

Psh Pressure shift. 2

(Real)

[ Pa ]
c Outlet sound speed. 1

(Real)

[ m s ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada Wcaaqaaiaab2gaaeaacaqGZbaaaaGaay5waiaaw2faaaaa@39DE@
l c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGJbaabeaaaaa@37FB@ Characteristic length. 1

(Real)

[ m 3 ]
ρ 0 κ 0 Initial turbulent energy.

(Real)

[ J ]
ρ 0 ε 0 Initial turbulent dissipation.

(Real)

[ J ]
fct_IDk Function f κ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiabeQ7aRbWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaa@3BBC@ identifier for turbulence modeling.
= 0
κ = κ adjacent
> 0
κ = κ 0 f κ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSMaeyypa0JaeqOUdS2damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiabgwSixlaabAgapaWaaSbaaSqaa8qacqaH6oWAa8aabeaak8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@439E@

(Integer)

fct_IDe Function f ε (t) identifier for energy.
= 0
ε = ε adjacent
= n
ε = ε 0 f ε ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaeqyTdu2damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiabgwSixlaabAgapaWaaSbaaSqaa8qacqaH1oqza8aabeaak8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@437D@

(Integer)

C μ Turbulent viscosity coefficient.

Default = 0.09 (Real)

σ κ Diffusion coefficient for k parameter.

Default = 1.00 (Real)

σ ε Diffusion coefficient for ε parameter.

Default = 1.30 (Real)

P r / P r t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGYbaabeaakiaad+cacaWGqbWaaSbaaSqaaiaadkhacaWG 0baabeaaaaa@3B9E@ Ratio between Laminar Prandtl number (Default 0.7) and turbulent Prandtl number (Default 0.9).

(Real)

Example (Gas)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/B-K-EPS/5
GAS OUTLET (unit: kg_m_s)
#              RHO_I               RHO_0         
               .3828                   0
#     ITYP                           Psh       
         3                           0.0 		 
#                                      c                  lc
                                     605                 0.3
#blank line

#blank line
                    
#blank line

#             Rho0k0            Rho0Eps0     fct_k   fct_eps
                  20                   0         0         0
#                Cmu             Sigma-k       Sigma-epsilon              Pr/Prt
                   0                   0                   0                   0  
#blank line

/ALE/MAT/5
#     Modif. factor.
                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. Non-Reflecting Boundary formulation is based on Bayliss & Turkel. 1 The objective is to impose a mean pressure which fluctuate with rapid variations of pressure and velocity:

    P t = ρ c ( t ( V n ) V n div ( V V n n ) ) + c ( P P ) 2 l c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq GHciITcaWGqbaabaGaeyOaIyRaamiDaaaacqGH9aqpcqaHbpGCcaaM i8Uaam4yamaabmaabaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0b aaaiaacIcacaWGwbWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiabgkHi TiaadAfadaWgaaWcbaGaamOBaaqabaGccqGHflY1ciGGKbGaaiyAai aacAhadaqadaqaaiaahAfacqGHsislcaWGwbWaaSbaaSqaaiaad6ga aeqaaOGaeyyXICTaaCOBaaGaayjkaiaawMcaaaGaayjkaiaawMcaai abgUcaRiaadogadaWcaaqaaiaacIcacaWGqbWaaSbaaSqaaiabg6Hi LcqabaGccqGHsislcaWGqbGaaiykaaqaaiaaikdacaWGSbWaaSbaaS qaaiaadogaaeqaaaaaaaa@6372@

    Pressure in the far field P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaaaa@3868@ is imposed with a function of time. The transient pressure is derived from P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacqGHEisPaeqaaaaa@3868@ , the local velocity field V and the normal of the outlet facet:
    • density, energy, temperature, turbulent energy and dissipation are imposed with a function of time as in Ityp = 2
    • if the function number is 0, the neighbor element value is used to respect continuity
    • acoustic impedance will be ρ c
    • typical length l c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGJbaabeaaaaa@37FB@ is used to relax the effective pressure towards its imposed value. It should be large compared to the highest wave length of interest in the problem. The relaxation term acts as high pass filter whose frequency cut-off is:
      f c = c 4 · π · l c

    Where, sound speed c and characteristic length l c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaBa aaleaacaWGJbaabeaaaaa@37FB@ are two required parameters (non zero).

  2. The Psh parameter enables shifting the output pressure which also becomes P-Psh. If using P s h = P ( t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGtbGaamisaaqabaGccqGH9aqpcaWGqbWaaeWaaeaacaWG 0bGaeyypa0JaaGimaaGaayjkaiaawMcaaaaa@3EC3@ , the output pressure will be Δ P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaeiLdiaadcfaaaa@3B95@ , with an initial value of 0.0.
  3. With thermal modeling, all thermal data ( T 0 , ρ 0 C p , ...) can be defined with /HEAT/MAT.
  4. It is not possible to use this boundary material law with multi-material ALE /MAT/LAW37 (BIPHAS) and /MAT/LAW51 (MULTIMAT).
1 A. Bayliss, E. Turkel, "Outflow Boundary Condition for Fluid Dynamics", NASA-CR-170367, Institute for Computer Application in Science and Engineering, August 7, 1980