Ityp = 2
Block Format Keyword This law enables to model a material inlet/outlet by directly imposing its state. Input card is similar to /MAT/LAW11 (BOUND), but introduces two new lines to define turbulence parameters.

Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/B-K-EPS/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
ρi | ρ0 | ||||||||
Ityp | Psh | FscaleT |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Blank Format | |||||||||
fct_ID ρ | |||||||||
fct_IDp | P0 | ||||||||
fct_IDE | E0 | ||||||||
ρ0κ0 | ρ0ε0 | fct_IDk | fct_IDe | ||||||
Cμ | σκ | σε | Pr/Prt | ||||||
fct_IDT | fct_IDQ |
Definition
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material
identifier. (Integer, maximum 10 digits) |
|
unit_ID | Unit identifier. (Integer, maximum 10 digits) |
|
mat_title | Material
title. (Character, maximum 100 characters) |
|
ρi | Initial density.
3 (Real) |
[kgm3] |
ρ0 | Reference density
used in E.O.S (equation of state). Default ρ0 = ρi (Real) |
[kgm3] |
Ityp | Boundary condition
type. 1
(Integer) |
|
Psh | Pressure shift.
3 (Real) |
[Pa] |
FscaleT | Time scale factor. 3 (Real) |
|
fct_ID ρ | Function
fρ(t)
identifier for
boundary density. 3
(Integer) |
|
fct_IDp | Function
fP(t)
identifier for
boundary pressure.. 3
(Integer) |
|
P0 | Initial pressure.
3 (Real) |
[Pa] |
fct_IDE | Function
fE(t)
identifier for boundary
energy. 3
(Integer) |
|
E0 | Initial energy.
3
6 (Real) |
[Pa] |
ρ0κ0 | Initial turbulent
energy. (Real) |
[J] |
ρ0ε0 | Initial turbulent
dissipation. (Real) |
[J] |
fct_IDk | Function
fκ(t)
identifier for turbulence modeling.
(Integer) |
|
fct_ID ε | (Optional) Function
fε(t)
identifier for turbulence modeling.
(Integer) |
|
Cμ | Turbulent viscosity
coefficient. Default = 0.09 (Real) |
|
σκ | Diffusion
coefficient for
κ
parameter. Default = 1.00 (Real) |
|
σε | Diffusion
coefficient for
˙ε
parameter Default = 1.30 (Real) |
|
Pr/Prt | Ratio between
Laminar Prandtl number (Default 0.7) and turbulent Prandtl
number (Default 0.9). (Real) |
|
fct_IDT | Function
fT(t)
identifier for inlet temperature.
(Integer) |
|
fct_IDQ | Function
fQ(t)
identifier for inlet heat flux.
(Integer) |
▸Example (Gas)
Comments
- Provided state is directly
imposed to inlet boundary elements. This leads to the following inlet state:ρin=ρifρ(t)Pin=P0fP(t)Ein=(ρe)in=E0fE(t)
With this formulation, you may impose velocity on boundary nodes to be consistent with physical inlet velocity (/IMPVEL). /MAT/LAW11 - Ityp=0 and 1, are based on material state from stagnation point, where you do not need to imposed an inlet velocity.
- The Psh parameter enables shifting the output pressure which also becomes P-Psh. If using Psh=P(t=0) , the output pressure will be ΔP , with an initial value of 0.0.
- If no function is defined, then related quantity ( Pstagnation,ρstagnation,T , or Q) remains constant and set to its initial value. However, all input quantities ( Pstagnation,ρstagnation,T , and Q) can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f(Fscalet,t) instead of f(t) .
- With thermal modeling, all thermal data ( T0,ρ0Cp , …) can be defined with /HEAT.
- It is not possible to use this boundary material law with multi-material ALE /MAT/LAW37 (BIPHAS)) and /MAT/LAW51 (MULTIMAT).
- Specific volume energy
E is defined as
E=EintV
, Where
- Eint
- Internal energy. It can be output using /TH/BRIC.
Specific mass energy e is defined as e=Eint/m . This leads to ρe=E . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.