Ityp = 2

Block Format Keyword This law enables to model a material inlet/outlet by directly imposing its state. Input card is similar to /MAT/LAW11 (BOUND), but introduces two new lines to define turbulence parameters.


law11_ityp2
Figure 1.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/B-K-EPS/mat_ID/unit_ID
mat_title
ρi ρ0
Ityp Psh FscaleT
Ityp =2: General Inlet/Outlet
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Blank Format
fct_ID ρ
fct_IDp P0
fct_IDE E0
ρ0κ0 ρ0ε0 fct_IDk fct_IDe
Cμ σκ σε Pr/Prt
fct_IDT fct_IDQ

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Unit identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρi Initial density. 3

(Real)

[kgm3]
ρ0 Reference density used in E.O.S (equation of state).

Default ρ0 = ρi (Real)

[kgm3]
Ityp Boundary condition type. 1
= 0
Gas inlet (from stagnation point data)
= 1
Liquid inlet (from stagnation point data)
= 2
General inlet/outlet
= 3
Non-reflecting boundary

(Integer)

Psh Pressure shift. 3

(Real)

[Pa]
FscaleT Time scale factor. 3

(Real)

fct_ID ρ Function fρ(t) identifier for boundary density. 3
= 0
ρ(t)=ρi
> 0
ρ(t)=ρifρ(t)

(Integer)

fct_IDp Function fP(t) identifier for boundary pressure.. 3
= 0
P(t)=P0
> 0
P(t)=P0fP(t)

(Integer)

P0 Initial pressure. 3

(Real)

[Pa]
fct_IDE Function fE(t) identifier for boundary energy. 3
= 0
E(t)=E0
> 0
E(t)=E0fE(t)

(Integer)

E0 Initial energy. 3 6

(Real)

[Pa]
ρ0κ0 Initial turbulent energy.

(Real)

[J]
ρ0ε0 Initial turbulent dissipation.

(Real)

[J]
fct_IDk Function fκ(t) identifier for turbulence modeling.
= 0
κ=κadjacent
> 0
κ=κ0fκ(t)

(Integer)

fct_ID ε (Optional) Function fε(t) identifier for turbulence modeling.
= 0
ε=εadjacent
> 0
ε=ε0fε(t)

(Integer)

Cμ Turbulent viscosity coefficient.

Default = 0.09 (Real)

σκ Diffusion coefficient for κ parameter.

Default = 1.00 (Real)

σε Diffusion coefficient for ˙ε parameter

Default = 1.30 (Real)

Pr/Prt Ratio between Laminar Prandtl number (Default 0.7) and turbulent Prandtl number (Default 0.9).

(Real)

fct_IDT Function fT(t) identifier for inlet temperature.
= 0
T = Tadjacent
= n
T=T0fT(t)

(Integer)

fct_IDQ Function fQ(t) identifier for inlet heat flux.
= 0
No imposed flux
= n
Q=fQ(t)

(Integer)

Example (Gas)

Comments

  1. Provided state is directly imposed to inlet boundary elements. This leads to the following inlet state:

    ρin=ρifρ(t)
    Pin=P0fP(t)
    Ein=(ρe)in=E0fE(t)

    With this formulation, you may impose velocity on boundary nodes to be consistent with physical inlet velocity (/IMPVEL). /MAT/LAW11 - Ityp=0 and 1, are based on material state from stagnation point, where you do not need to imposed an inlet velocity.

  2. The Psh parameter enables shifting the output pressure which also becomes P-Psh. If using Psh=P(t=0) , the output pressure will be ΔP , with an initial value of 0.0.
  3. If no function is defined, then related quantity ( Pstagnation,ρstagnation,T , or Q) remains constant and set to its initial value. However, all input quantities ( Pstagnation,ρstagnation,T , and Q) can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f(Fscalet,t) instead of f(t) .
  4. With thermal modeling, all thermal data ( T0,ρ0Cp , …) can be defined with /HEAT.
  5. It is not possible to use this boundary material law with multi-material ALE /MAT/LAW37 (BIPHAS)) and /MAT/LAW51 (MULTIMAT).
  6. Specific volume energy E is defined as E=EintV ,
    Where
    Eint
    Internal energy. It can be output using /TH/BRIC.

    Specific mass energy e is defined as e=Eint/m . This leads to ρe=E . Specific mass energy e can be output using /ANIM/ELEM/ENER. This may be a relative energy depending on user modeling.