Ityp = 0

Block Format Keyword This law enables to model a gas inlet condition by providing data from stagnation point. Gas is supposed to be a perfect gas. Input card is similar to /MAT/LAW11 (BOUND), but introduces two new lines to define turbulence parameters.


law11_ityp0

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/B-K-EPS/mat_ID/unit_ID
mat_title
ρ i stagnation ρ 0 stagnation
Ityp Psh FscaleT
Ityp =0: Gas Inlet (from stagnation point data)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
node_IDv γ Cd
fct_ID ρ
fct_IDp P 0 stagnation
Blank Format
ρ 0 κ 0 ρ 0 ε 0 fct_IDk fct_ID ε
C μ σ κ σ ε P r / P r t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGYbaabeaakiaad+cacaWGqbWaaSbaaSqaaiaadkhacaWG 0baabeaaaaa@3B9E@
fct_IDT fct_IDv

Definition

Field Contents SI Unit Example
mat_ID Material identifier.

(Integer, maximum 10 digits)

unit_ID Unit Identifier.

(Integer, maximum 10 digits)

mat_title Material title.

(Character, maximum 100 characters)

ρ i stagnation Initial stagnation density.

(Real)

[ kg m 3 ]
ρ 0 stagnation Reference density used in E.O.S (equation of state).

Default ρ 0 stagnation = ρ i stagnation (Real)

[ kg m 3 ]
Ityp Boundary condition type. 1
= 0
Gas inlet (from stagnation point data)
= 1
Liquid inlet (from stagnation point data)
= 2
General inlet/outlet
= 3
Non-reflecting boundary

(Integer)

Psh Pressure shift. 2

(Real)

[ Pa ]
FscaleT Time scale factor. 3

(Real)

node_IDv Node identifier for velocity computation. 3
= 0
v i n = min n o d e f a c e ( v n o d e n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbGaamOBaaqabaGccqGH9aqpdaWfqaqaaiGac2gacaGG PbGaaiOBaaWcbaGaamOBaiaad+gacaWGKbGaamyzaiabgIGiolaadA gacaWGHbGaam4yaiaadwgaaeqaaOWaaeWaaeaacaWH2bWaaSbaaSqa aiaad6gacaWGVbGaamizaiaadwgaaeqaaOGaeyyXICTaaCOBaaGaay jkaiaawMcaaaaa@4FBE@
> 0
v i n = v n o d e _ I D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGPbGaamOBaaqabaGccqGH9aqpdaqbdaqaaiaahAhadaWg aaWcbaGaamOBaiaad+gacaWGKbGaamyzaiaac+facaWGjbGaamiraa qabaaakiaawMa7caGLkWoaaaa@449F@

(Integer)

γ Perfect gas constant.

(Real)

Cd Discharge coefficient. 5

Default = 0.0 (Real)

fct_ID ρ Function f ρ ( t ) identifier for stagnation density. 3
= 0
ρ stagnation ( t ) = ρ i stagnation
> 0
ρ stagnation ( t ) = ρ i stagnation · f ρ ( t )

(Integer)

fct_IDp Function f P ( t ) identifier for stagnation pressure. 3
= 0
P stagnation ( t ) = P 0 stagnation
> 0
P s t a g n a t i o n ( t ) = P 0 s t a g n a t i o n f P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaahaaWcbeqaa8qacaWGZbGaamiDaiaadggacaWGNbGa amOBaiaadggacaWG0bGaamyAaiaad+gacaWGUbaaaOWaaeWaa8aaba WdbiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGqbWdamaaDaaaleaa peGaaGimaaWdaeaapeGaam4CaiaadshacaWGHbGaam4zaiaad6gaca WGHbGaamiDaiaadMgacaWGVbGaamOBaaaakiabgwSixlaabAgapaWa aSbaaSqaa8qacaWGqbaapaqabaGcpeWaaeWaa8aabaWdbiaadshaai aawIcacaGLPaaaaaa@56D3@

(Integer)

P 0 stagnation Initial stagnation pressure. 3

(Real)

[ Pa ]
ρ 0 κ 0 Initial turbulent energy.

(Real)

[ J ]
ρ 0 ε 0 Initial turbulent dissipation.

(Real)

[ J ]
fct_IDk Function f κ ( t ) identifier for turbulence modeling.
= 0
κ = κ adjacent
> 0
κ = κ 0 · f κ ( t )

(Integer)

fct_ID ε Function f ε ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiabew7aLbWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaa@3BB1@ identifier for turbulence modeling.
= 0
ε = ε adjacent
> 0
ε = ε 0 f ε ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaeqyTdu2damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiabgwSixlaabAgapaWaaSbaaSqaa8qacqaH1oqza8aabeaak8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@437D@

(Integer)

C μ Turbulent viscosity coefficient.

Default = 0.09 (Real)

σ κ Diffusion coefficient for k parameter.

Default = 1.00 (Real)

σ ε Diffusion coefficient for ε parameter.

Default = 1.30 (Real)

P r / P rt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGYbaabeaakiaad+cacaWGqbWaaSbaaSqaaiaadkhacaWG 0baabeaaaaa@3B9E@ Ratio between Laminar Prandtl number (Default 0.7) and turbulent Prandtl number (Default 0.9).

(Real)

fct_IDT Function f T ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3AE3@ identifier for inlet temperature. 3 6
= 0
T = Tv
= n
T = T 0 f T ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyyXICTaaeOza8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@4113@

(Integer)

fct_IDQ Function f Q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadgfaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3AE0@ identifier for inlet heat flux. 3 6
= 0
no imposed flux
= n
Q = f Q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaabAgapaWaaSbaaSqaa8qacaWGrbaapaqabaGc peWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3CBC@

(Integer)

Comments

  1. Provided gas state from stagnation point ( ρ stagnation , P stagnation ) is used to compute inlet gas state.

    A set of equations including Total Enthalpy formulation, Adiabatic Law and Equation of State allows for the complete definition of the inlet state:

    ρ in = ρ stagnation [ 1 γ 1 2 γ ρ stagnation P stagnation ( 1 + C d ) ν in 2 ] 1 γ 1
    P in = P stagnation ( ρ in ρ stagnation ) γ
    ( ρ e ) in = P in γ 1

  2. The PSH parameter enables shifting the output pressure which also becomes P-PSH. If using P s h = P ( t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGtbGaamisaaqabaGccqGH9aqpcaWGqbWaaeWaaeaacaWG 0bGaeyypa0JaaGimaaGaayjkaiaawMcaaaaa@3EC3@ , the output pressure will be Δ P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaeiLdiaadcfaaaa@3B95@ , with an initial value of 0.0.
  3. If no function is defined, then related quantity P s t a g n a t i o n , ρ s t a g n a t i o n , T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadohacaWG0bGaamyyaiaadEgacaWG UbGaamyyaiaadshacaWGPbGaam4Baiaad6gaa8aabeaak8qacaGGSa GaeqyWdi3damaaBaaaleaapeGaam4CaiaadshacaWGHbGaam4zaiaa d6gacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqaaOWdbiaacY cacaWGubaaaa@4E96@ or Q remains constant and set to its initial value. However, all input quantities P s t a g n a t i o n , ρ s t a g n a t i o n , T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadohacaWG0bGaamyyaiaadEgacaWG UbGaamyyaiaadshacaWGPbGaam4Baiaad6gaa8aabeaak8qacaGGSa GaeqyWdi3damaaBaaaleaapeGaam4CaiaadshacaWGHbGaam4zaiaa d6gacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqaaOWdbiaacY cacaWGubaaaa@4E96@ and Q can be defined as time dependent function using provided function identifiers. Abscissa functions can also be scaled using FscaleT parameter which leads to use f ( F s c a l e t , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciOzamaabmaapaqaa8qacaWGgbGaam4CaiaadogacaWGHbGaamiB aiaadwgapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaaiilaiaads haaiaawIcacaGLPaaaaaa@4122@ instead of f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3999@ .
  4. Inlet velocity v i n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaqhaaWcbaWdbiaadMgacaWGUbaapaqaaaaaaaa@3943@ is used in Bernoulli theory, fixed velocity.
  5. Discharge coefficient accounts for entry loss and depends on shape orifice.
    Figure 1.

    mat_bound_sharpedge
  6. With thermal modeling, all thermal data ( T 0 , ρ 0 C p , ...) can be defined with /HEAT/MAT.
  7. It is not possible to use this boundary material law with multi-material ALE /MAT/LAW37 (BIPHAS) and /MAT/LAW51 (MULTIMAT).