Radiation Modeling with Participating Media

In AcuSolve enclosure or surface to surface radiation models, effect of media between surfaces is ignored. This assumption is acceptable when you are dealing with lower temperature fluids. Nonetheless, while you have semi-transparent media like glass or high temperature gases like in flames, effect of media should be considered in heat transfer analysis. Two models are available in AcuSolve: A simple one equation P1 model and more detailed but expensive discrete ordinates (DO) model.

Radiative Transfer Equation (RTE)

Radiative energy balance in a participating media is governed by the following integro-differential equation, known as the radiative transfer equation (RTE):

Ω·I r,Ω rateofchange + κI r,Ω Absorption + σ s I r,Ω Scattering loss = f(r) Emission + σ s 4π 4π I r, Ω ϕ Ω ,Ω d Ω Scattering addition MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaGbaaeaacq qHPoWvcqWIpM+zcqGHhis0caWGjbWaaeWaaeaacaWGYbGaaiilaiab fM6axbGaayjkaiaawMcaaaWcbaGaaeOCaiaabggacaqG0bGaaeyzai aaygW7caaMb8UaaGPaVlaaykW7caqGVbGaaeOzaiaaykW7caaMc8Ua ae4yaiaabIgacaqGHbGaaeOBaiaabEgacaqGLbaakiaawIJ=aiabgU caRmaayaaabaGaeqOUdSMaamysamaabmaabaGaamOCaiaacYcacqqH PoWvaiaawIcacaGLPaaaaSqaaiaabgeacaqGIbGaae4Caiaab+gaca qGYbGaaeiCaiaabshacaqGPbGaae4Baiaab6gaaOGaayjo+dGaey4k aSYaaGbaaeaacqaHdpWCdaWgaaWcbaGaam4CaaqabaGccaWGjbWaae WaaeaacaWGYbGaaiilaiabfM6axbGaayjkaiaawMcaaaWcbaGaae4u aiaabogacaqGHbGaaeiDaiaabshacaqGLbGaaeOCaiaabMgacaqGUb Gaae4zaiaabccacaqGSbGaae4BaiaabohacaqGZbaakiaawIJ=aiab g2da9maayaaabaGaamOzaiaacIcacaWGYbGaaiykaaWcbaGaaeyrai aab2gacaqGPbGaae4CaiaabohacaqGPbGaae4Baiaab6gaaOGaayjo +dGaey4kaSYaaGbaaeaadaWcaaqaaiabeo8aZnaaBaaaleaacaWGZb aabeaaaOqaaiaaisdacqaHapaCaaWaa8quaeaacaWGjbWaaeWaaeaa caWGYbGaaiilaiqbfM6axzaafaaacaGLOaGaayzkaaaaleaacaaI0a GaeqiWdahabeqdcqGHRiI8aOGaeqy1dy2aaeWaaeaacuqHPoWvgaqb aiaacYcacqqHPoWvaiaawIcacaGLPaaacaWGKbGafuyQdCLbauaaaS qaaiaabofacaqGJbGaaeyyaiaabshacaqG0bGaaeyzaiaabkhacaqG PbGaaeOBaiaabEgacaqGGaGaaeyyaiaabsgacaqGKbGaaeyAaiaabs hacaqGPbGaae4Baiaab6gaaOGaayjo+daaaa@BEF9@

where I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@36C2@ is the radiation intensity, r MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@36EB@ is the spatial vector, Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3782@ is the unit directional vector, Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbau aaaaa@378E@ is the scattering directional vector, κ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdSgaaa@37A6@ is the absorption coefficient, and σ s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadohaaeqaaaaa@38DB@ is the scattering coefficient, f ( r ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWGYbGaaiykaaaa@392F@ is an emission, n the refractive index, and σ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37B7@ is the Stefan-Boltzman constant (5.67 × 10-8 W m-2 K-4). T is the temperature (K).
  • P1 radiation model
  • Discrete Ordinates (DO) model

P1 Radiation Model

The P1 model is the lowest order PN (spherical harmonics) type radiation model. The method reduces the five independent variables of the Radiative Transfer Equation (RTE) into a PDE that is relatively simple in comparison. The model is the most computationally efficient of the radiation models in AcuSolve, but it can lose accuracy, under certain conditions, for optically thin media. It performs best in scenarios where the radiative intensity is near isotropic.

Governing Equation

P1 approximation and assumptions

The P1 model is derived from the general PN formulation (a spherical harmonic series expansion of the radiative intensity for the angular variable) by assuming that the series is limited to four terms and integrating over all solid angles. From the first harmonic in the series approximation, the divergence of the radiative flux ( q MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EA@ ) can be derived by integrating the RTE over all solid angles as

q = κ 4 n 2 σ T 4 G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaey yXICTaamyCaiabg2da9iabeQ7aRnaabmaabaGaaGinaiaad6gadaah aaWcbeqaaiaaikdaaaGccqaHdpWCcaWGubWaaWbaaSqabeaacaaI0a aaaOGaeyOeI0Iaam4raaGaayjkaiaawMcaaaaa@46E9@

where G MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raaaa@36C0@ is the incident radiation σ s 4 π 4 π I r , Ω ϕ Ω , Ω d Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aHdpWCdaWgaaWcbaGaam4CaaqabaaakeaacaaI0aGaeqiWdahaamaa pefabaGaamysamaabmaabaGaamOCaiaacYcacuqHPoWvgaqbaaGaay jkaiaawMcaaaWcbaGaaGinaiabec8aWbqab0Gaey4kIipakiabew9a MnaabmaabaGafuyQdCLbauaacaGGSaGaeuyQdCfacaGLOaGaayzkaa GaamizaiqbfM6axzaafaaaaa@4F83@ , κ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdSgaaa@37A6@ is the absorption coefficient, n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E7@ the refractive index, and σ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37B7@ is the Stefan-Boltzman constant (5.67 × 10-8 W m-2 K-4), q MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaaaa@36EA@ is the radiative flux.

Additionally, a second vector equation can be derived from the other three harmonic terms for the radiative flux

q=ΓG MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaiabg2 da9iabfo5ahjaaygW7caaMc8Uaey4bIeTaam4raaaa@3EBF@

where Γ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@375C@ is the diffusion coefficient.

By taking the divergence of (2), and substituting into this the right hand side of equation (1), leads to elimination of the heat flux. The final diffusion reaction equation describing the transport of incident radiation is given by

Γ 2 Gκ(4 n 2 σ T 4 G)=0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaaG PaVlabgEGirpaaCaaaleqabaGaaGOmaaaakiaadEeacqGHsislcqaH 6oWAcaGGOaGaaGinaiaad6gadaahaaWcbeqaaiaaikdaaaGccqaHdp WCcaWGubWaaWbaaSqabeaacaaI0aaaaOGaeyOeI0Iaam4raiaacMca cqGH9aqpcaaIWaaaaa@49D2@

where Γ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@375C@ is a diffusion coefficient given by

Γ= 1 3 κ+ σ s A 1 σ s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaey ypa0ZaaSaaaeaacaaIXaaabaGaaG4mamaabmaabaGaeqOUdSMaey4k aSIaeq4Wdm3aaSbaaSqaaiaadohaaeqaaaGccaGLOaGaayzkaaGaey OeI0IaamyqamaaBaaaleaacaaIXaaabeaakiabeo8aZnaaBaaaleaa caWGZbaabeaaaaaaaa@4683@

where κ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdSgaaa@37A6@ is the absorption coefficient, σ s MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadohaaeqaaaaa@38DB@ is the scattering coefficient, and A 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaaaaa@37A1@ is the linear-anisotropic phase function.

Anisotropic scattering

The implementation in AcuSolve includes the ability to model linear anisotropic scattering

ϕ Ω Ω =1+ A 1 Ω Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aae WaaeaacuqHPoWvgaqbaiabgwSixlabfM6axbGaayjkaiaawMcaaiab g2da9iaaigdacqGHRaWkcaWGbbWaaSbaaSqaaiaaigdaaeqaaOGafu yQdCLbauaacqGHflY1cqqHPoWvaaa@4883@

where Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3782@ is the unit directional vector in the scattering direction, Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbau aaaaa@378E@ is the unit directional vector in the incident radiation direction. This term is included in the scattering term of the RTE along with the four term spherical harmonic expansion of the radiative intensity field (the first term being isotropic and the other three anisotropic). The final form of the P1 approximation in equation (3) includes this term. The values of the phase function A1 have the following meaning:
  • A1 = 1: More radiation is scattered in the forward direction
  • A1= -1: More radiation is scattered in the backward direction
  • A1= 0: Isotropic scattering

Coupling to energy equation

The source term in equation (1) can be substituted into the energy equation as a negative source since a local increase in radiative heat flux is due to a local decrease in thermal energy.

In AcuSolve the default stagger sequence when the P1 radiative heat transfer solver is enabled is:
  1. Solve the energy equation with source term ( κ(4n2σT4-G) ), where G is zero for the time step
  2. Pass temperature to radiation solver and solve equation (3)
  3. Repeat until converged

Boundary Conditions

Marshak's boundary condition

Based on the assumption that the walls are diffused gray surfaces, that is, independent of wavelength, the appropriate wall boundary condition is

nG= ε 2(2ε) 4 n 2 σ T w 4 G w MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabgw SixlabgEGirlaadEeacqGH9aqpdaWcaaqaaiabew7aLbqaaiaaikda caGGOaGaaGOmaiabgkHiTiabew7aLjaacMcaaaWaaeWaaeaacaaI0a GaamOBamaaCaaaleqabaGaaGOmaaaakiabeo8aZjaadsfadaqhaaWc baGaam4DaaqaaiaaisdaaaGccqGHsislcaWGhbWaaSbaaSqaaiaadE haaeqaaaGccaGLOaGaayzkaaaaaa@4F4A@

where ε MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379B@ is the surface emissivity, T w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaDa aaleaacaWG3baabaaaaaaa@37F5@ is the wall temperature, and G w MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4ramaaBa aaleaacaWG3baabeaaaaa@37E8@ the wall incident radiation. The boundary radiative heat flux can be calculated from the incident radiation and the temperature at the wall:

q w = ε 2(2ε) G w 4 n 2 σ T w 4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWG3baabeaakiabg2da9maalaaabaGaeqyTdugabaGaaGOm aiaacIcacaaIYaGaeyOeI0IaeqyTduMaaiykaaaadaqadaqaaiaadE eadaWgaaWcbaGaam4DaaqabaGccqGHsislcaaI0aGaamOBamaaCaaa leqabaGaaGOmaaaakiabeo8aZjaadsfadaqhaaWcbaGaam4Daaqaai aaisdaaaaakiaawIcacaGLPaaaaaa@4BE3@

Discrete Ordinates (DO) Model

Governing equation

The governing equation is the radiative transfer equation limited to a finite number of directions (or ordinates)

Ω · I r , Ω + κ I r , Ω + σ s I r , Ω = f ( r ) + σ s 4 π 4 π I r , Ω ϕ Ω , Ω d Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaeS 4JPFMaey4bIeTaamysamaabmaabaGaamOCaiaacYcacqqHPoWvaiaa wIcacaGLPaaacqGHRaWkcqaH6oWAcaWGjbWaaeWaaeaacaWGYbGaai ilaiabfM6axbGaayjkaiaawMcaaiabgUcaRiabeo8aZnaaBaaaleaa caWGZbaabeaakiaadMeadaqadaqaaiaadkhacaGGSaGaeuyQdCfaca GLOaGaayzkaaGaeyypa0JaamOzaiaacIcacaWGYbGaaiykaiabgUca RmaalaaabaGaeq4Wdm3aaSbaaSqaaiaadohaaeqaaaGcbaGaaGinai abec8aWbaadaWdrbqaaiaadMeadaqadaqaaiaadkhacaGGSaGafuyQ dCLbauaaaiaawIcacaGLPaaaaSqaaiaaisdacqaHapaCaeqaniabgU IiYdGccqaHvpGzdaqadaqaaiqbfM6axzaafaGaaiilaiabfM6axbGa ayjkaiaawMcaaiaadsgacuqHPoWvgaqbaaaa@7135@
f(r)=κ I b (r)=κ σ T 4 π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWGYbGaaiykaiabg2da9iabeQ7aRjaadMeadaWgaaWcbaGaamOy aaqabaGccaGGOaGaamOCaiaacMcacqGH9aqpcqaH6oWAdaWcaaqaai abeo8aZjaadsfadaahaaWcbeqaaiaaisdaaaaakeaacqaHapaCaaaa aa@4837@

Scattering term (source term)

The integral over all the directions in equation (1) is replaced by a numerical quadrature for N MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaWcbaGaamOtaaaa@36C8@ different ordinate directions ( Ω i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaadMgaaeqaaaaa@389C@ )

S = σ s 4 π j = 1 N w j I ( r , Ω j ) ϕ Ω j , Ω i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 da9maalaaabaGaeq4Wdm3aaSbaaSqaaiaadohaaeqaaaGcbaGaaGin aiabec8aWbaadaaeWbqaaiaadEhadaWgaaWcbaGaamOAaaqabaGcca WGjbGaaiikaiaadkhacaGGSaGaeuyQdC1aaSbaaSqaaiaadQgaaeqa aOGaaiykaiabew9aMnaabmaabaGaeuyQdC1aaSbaaSqaaiaadQgaae qaaOGaaiilaiabfM6axnaaBaaaleaacaWGPbaabeaaaOGaayjkaiaa wMcaaaWcbaGaamOAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLd aaaa@551B@

The phase function, ϕ Ω j , Ω i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aae WaaeaacqqHPoWvdaWgaaWcbaGaamOAaaqabaGccaGGSaGaeuyQdC1a aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaa@3F5A@ , is given by

ϕ Ω Ω = 1 + A 1 Ω Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2aae WaaeaacuqHPoWvgaqbaiabgwSixlabfM6axbGaayjkaiaawMcaaiab g2da9iaaigdacqGHRaWkcaWGbbWaaSbaaSqaaiaaigdaaeqaaOWaae WaaeaacuqHPoWvgaqbaiabgwSixlabfM6axbGaayjkaiaawMcaaaaa @4A0C@

Boundary conditions (RTE)

Diffused surface

If a surface emits and reflects diffusely, the exiting intensity is directionally independent and is given by

I( r w , Ω i )=ε( r w ) I b ( r w )+ 1ε( r w ) π n Ω j <0 w j I( r w , Ω j ) n Ω j ,n Ω j >0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaacI cacaWGYbWaaSbaaSqaaiaadEhaaeqaaOGaaiilaiabfM6axnaaBaaa leaacaWGPbaabeaakiaacMcacqGH9aqpcqaH1oqzcaGGOaGaamOCam aaBaaaleaacaWG3baabeaakiaacMcacaWGjbWaaSbaaSqaaiaadkga aeqaaOGaaiikaiaadkhadaWgaaWcbaGaam4DaaqabaGccaGGPaGaey 4kaSYaaSaaaeaacaaIXaGaeyOeI0IaeqyTduMaaiikaiaadkhadaWg aaWcbaGaam4DaaqabaGccaGGPaaabaGaeqiWdahaamaaqafabaGaam 4DamaaBaaaleaacaWGQbaabeaakiaadMeacaGGOaGaamOCamaaBaaa leaacaWG3baabeaakiaacYcacqqHPoWvdaWgaaWcbaGaamOAaaqaba GccaGGPaWaaqWaaeaacaWGUbGaeyyXICTaeuyQdC1aaSbaaSqaaiaa dQgaaeqaaaGccaGLhWUaayjcSdaaleaacaWGUbGaeyyXICTaeuyQdC 1aaSbaaWqaaiaadQgaaeqaaSGaeyipaWJaaGimaaqab0GaeyyeIuoa kiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaad6gacqGHflY1cqqHPoWvdaWg aaWcbaGaamOAaaqabaGccqGH+aGpcaaIWaGaaGPaVdaa@8A6B@

Specular and diffuse surface

The diffused fraction defines the proportion of reflected radiation intensity at a surface which is diffused, that is, the reflection may also have a specular component. If the radiation intensity reflection coefficient at the surface is defined by

ρ= ρ S + ρ D =1ε MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaey ypa0JaeqyWdi3aaWbaaSqabeaacaWGtbaaaOGaey4kaSIaeqyWdi3a aWbaaSqabeaacaWGebaaaOGaeyypa0JaaGymaiabgkHiTiabew7aLb aa@4380@

then the diffused reflection coefficient, ρ D MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaW baaSqabeaacaWGebaaaaaa@38AA@ , is defined in terms of the diffused fraction α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3793@ and the emissivity of the surface by

ρ D =α(1ε) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaW baaSqabeaacaWGebaaaOGaeyypa0JaeqySdeMaaiikaiaaigdacqGH sislcqaH1oqzcaGGPaaaaa@4001@

and the specular reflection coefficient

ρ S =(1α)(1ε) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaW baaSqabeaacaWGtbaaaOGaeyypa0JaaiikaiaaigdacqGHsislcqaH XoqycaGGPaGaaiikaiaaigdacqGHsislcqaH1oqzcaGGPaaaaa@4311@

If α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3793@ =1, then the reflection at the surface is completely diffused. If α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3793@ =0 then the reflection is specular. The outgoing intensity, I, at the surface in terms of the above two reflection coefficients is given by

I( r w , Ω i )=ε( r w ) I b ( r w )+ ρ D ( r w ) π n Ω j <0 N w j I( r w , Ω j ) n Ω j + ρ S ( r w )I( r w , Ω j ),n Ω j >0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaacI cacaWGYbWaaSbaaSqaaiaadEhaaeqaaOGaaiilaiabfM6axnaaBaaa leaacaWGPbaabeaakiaacMcacqGH9aqpcqaH1oqzcaGGOaGaamOCam aaBaaaleaacaWG3baabeaakiaacMcacaWGjbWaaSbaaSqaaiaadkga aeqaaOGaaiikaiaadkhadaWgaaWcbaGaam4DaaqabaGccaGGPaGaey 4kaSYaaSaaaeaacqaHbpGCdaahaaWcbeqaaiaadseaaaGccaGGOaGa amOCamaaBaaaleaacaWG3baabeaakiaacMcaaeaacqaHapaCaaWaaa bCaeaacaWG3bWaaSbaaSqaaiaadQgaaeqaaOGaamysaiaacIcacaWG YbWaaSbaaSqaaiaadEhaaeqaaOGaaiilaiabfM6axnaaBaaaleaaca WGQbaabeaakiaacMcadaabdaqaaiaad6gacqGHflY1cqqHPoWvdaWg aaWcbaGaamOAaaqabaaakiaawEa7caGLiWoaaSqaaiaad6gacqGHfl Y1cqqHPoWvdaWgaaadbaGaamOAaaqabaWccqGH8aapcaaIWaaabaGa amOtaaqdcqGHris5aOGaey4kaSIaeqyWdi3aaWbaaSqabeaacaWGtb aaaOGaaiikaiaadkhadaWgaaWcbaGaam4DaaqabaGccaGGPaGaamys aiaacIcacaWGYbWaaSbaaSqaaiaadEhaaeqaaOGaaiilaiabfM6axn aaBaaaleaacaWGQbaabeaakiaacMcacaGGSaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caWGUbGaeyyXICTaeuyQdC1aaSbaaSqaaiaadQgaaeqaaOGaeyOp a4JaaGimaiaaykW7aaa@99B4@

where the first terms represent emission from the surface, the second term the diffused component incoming radiation heat flux and the third the specular component. The diffused component represents a sum over all radiation intensities along ordinates that are incident to the surface (that is, a hemisphere of incoming radiation to the surface); n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E7@ is the normal into the domain and Ω j MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaadQgaaeqaaaaa@389D@ the jth ordinate direction. The ordinate direction ( Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3782@ ), the total number of ordinate directions ( N MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C7@ ) and the weights ( w MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daaaa@36F0@ ) are automatically defined by the order of the radiation_quadrature (S2, S4, S6, S8 & S10). The specular ordinate direction ( Ω S MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaadofaaeqaaaaa@3886@ ) is the direction that the radiation intensity must strike the surface to reflect in a specular fashion along the outgoing ordinate direction, Ω i MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaadMgaaeqaaaaa@389C@ , and is given by

Ω s = Ω i 2( Ω i n)n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaadohaaeqaaOGaeyypa0JaeuyQdC1aaSbaaSqaaiaadMga aeqaaOGaeyOeI0IaaGOmaiaacIcacqqHPoWvdaWgaaWcbaGaamyAaa qabaGccqGHflY1caWGUbGaaiykaiaad6gaaaa@464C@

which means the angle that incident radiation intensity strikes the surface equals the angle of reflection.

Boundary conditions (Energy equation)

Interface and outflow/inflow boundary conditions

At an opaque interface between participating and non-participating media or outflows/inflows a radiative heat flux must be added to the boundaries in the energy equation. This flux is given by

Q rad =ε Ω j n>0 w j I( r w ) Ω j n n 2 σ T w 4 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaWGYbGaamyyaiaadsgaaeqaaOGaeyypa0JaeqyTdu2aaeWa aeaadaaeqbqaaiaadEhadaWgaaWcbaGaamOAaaqabaGccaWGjbGaai ikaiaadkhadaWgaaWcbaGaam4DaaqabaGccaGGPaWaaqWaaeaacqqH PoWvdaWgaaWcbaGaamOAaaqabaGccqGHflY1caWGUbaacaGLhWUaay jcSdaaleaacqqHPoWvdaWgaaadbaGaamOAaaqabaWccqGHflY1caWG UbGaeyOpa4JaaGimaaqab0GaeyyeIuoakiabgkHiTiaad6gadaahaa WcbeqaaiaaikdaaaGccqaHdpWCcaWGubWaa0baaSqaaiaadEhaaeaa caaI0aaaaaGccaGLOaGaayzkaaGaaGPaVdaa@604B@

For an opening, that is, outflow or inflow, the black body intensity used in the calculation of the outgoing intensity at the surface is based on the opening temperature of the surrounding:

I b = κ n 2 σ T open 4 π MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWGIbaabeaakiabg2da9maalaaabaGaeqOUdSMaamOBamaa CaaaleqabaGaaGOmaaaakiabeo8aZjaadsfadaqhaaWcbaGaam4Bai aadchacaWGLbGaamOBaaqaaiaaisdaaaaakeaacqaHapaCaaaaaa@45A1@

while for an interface it is based on the current temperature solution.

Output metrics

Two directionally integrated output metrics can be derived from the radiative intensities: incident radiation and radiative heat flux.

Incident radiation

Incident radiation is the total intensity impinging on a point from all directions and is given by

G= i=1 N w i I(r) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiabg2 da9maaqahabaGaam4DamaaBaaaleaacaWGPbaabeaakiaadMeacaGG OaGaamOCaiaacMcaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaa qdcqGHris5aaaa@42C8@

where I MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaaaa@36C2@ is the intensity in direction i, N MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWccaWGobaaaa@36D2@ the number of ordinates, w MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daaaa@36F0@ the weights.

Interface Between two Semitransparent Media

At the interface between two semitransparent media (referred to as medium 1 and medium 2 below), radiative intensity is both transmitted and reflected. The proportion of transmitted and reflected intensity at the interface depends on: the refractive indices (n1, n2) of the two media; the incident angle that radiative intensity strikes the surface; and the diffuse fraction of the surface.

Reflection and transmission for specular interfaces

Reflection at an interface is governed by the angle of incidence of a radiative intensity and the refractive indices of the two media. The image below shows the different refracted and reflected rays between two media.
Figure 1. Reflected and refracted directions at the interface between two participating media of different refractive indices (n1 < n2). For the medium of higher refractive index if the incoming direction is greater than the critical angle total internal reflection occurs (no transmission occurs across the interface). This is represented by the gray dashed lines in the image.


The cosine of the incident angle for the incoming ordinate is given by

cos θ 1 = Ω I 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4yaiaac+ gacaGGZbGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeuyQ dC1aa0baaSqaaiaadMeaaeaacaaIXaaaaOGaeyyXICTaamOBaaaa@42FF@

where n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E7@ is the outward facing normal direction at the interface (towards the second medium) and Ω I 1 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aa0 baaSqaaiaadMeaaeaacaaIXaaaaOWaaSbaaSqaaiaaigdaaeqaaaaa @3A29@ is the unit direction of incoming radiative intensity to the surface, given by

Ω I 1 1 = Ω R 1 2( Ω R 1 n)n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aa0 baaSqaaiaadMeaaeaacaaIXaaaaOWaaSbaaSqaaiaaigdaaeqaaOGa eyypa0JaeuyQdC1aa0baaSqaaiaadkfaaeaacaaIXaaaaOGaeyOeI0 IaaGOmaiaacIcacqqHPoWvdaqhaaWcbaGaamOuaaqaaiaaigdaaaGc cqGHflY1caWGUbGaaiykaiaad6gaaaa@4919@

where Ω I 1 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aa0 baaSqaaiaadMeaaeaacaaIXaaaaOWaaSbaaSqaaiaaigdaaeqaaaaa @3A29@ is the unit reflected ordinate direction vector and also represents the current ordinate direction being solved. The equivalent calculation can also be performed for medium two.

Radiative intensity that is transmitted into a second medium undergoes refraction governed by Snell's law,

n 1 sin θ 1 = n 2 sin θ 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiabeI7aXnaaBaaa leaacaaIXaaabeaakiabg2da9iaad6gadaWgaaWcbaGaaGOmaaqaba GcciGGZbGaaiyAaiaac6gacqaH4oqCdaWgaaWcbaGaaGOmaaqabaaa aa@45B8@

where n1 and n2 are the refractive indices of mediums. θ1 and θ2 are the angles of incidence and refraction of radiative intensity relative to the interface normal, respectively. This can also be represented in vector form by

n 1 n× Ω I 1 = n 2 n× Ω R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakmaabmaabaGaamOBaiabgEna0kabfM6axnaa DaaaleaacaWGjbaabaGaaGymaaaaaOGaayjkaiaawMcaaiabg2da9i aad6gadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaad6gacqGHxdaT cqqHPoWvdaqhaaWcbaGaamOuaaqaaiaaikdaaaaakiaawIcacaGLPa aaaaa@4A8F@

The incoming direction vector in medium two for a ray refracted from medium two to one is given by

Ω I 2 = n 1 n 2 Ω R 1 + n 1 n 2 cos θ 1 1 n 1 n 2 2 1cos θ 1 n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aa0 baaSqaaiaadMeaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGUbWa aSbaaSqaaiaaigdaaeqaaaGcbaGaamOBamaaBaaaleaacaaIYaaabe aaaaGccqqHPoWvdaqhaaWcbaGaamOuaaqaaiaaigdaaaGccqGHRaWk daqadaqaamaalaaabaGaamOBamaaBaaaleaacaaIXaaabeaaaOqaai aad6gadaWgaaWcbaGaaGOmaaqabaaaaOGaci4yaiaac+gacaGGZbGa eqiUde3aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0YaaOaaaeaacaaIXa GaeyOeI0YaaeWaaeaadaWcaaqaaiaad6gadaWgaaWcbaGaaGymaaqa baaakeaacaWGUbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGymaiabgkHiTiGa cogacaGGVbGaai4CaiabeI7aXnaaBaaaleaacaaIXaaabeaaaOGaay jkaiaawMcaaaWcbeaaaOGaayjkaiaawMcaaiaad6gaaaa@5FE4@

The above expression is valid providing the expression under the radicand is greater than zero; otherwise total internal reflection occurs.

The actual reflected and refracted directions differ slightly from the calculated direction since these directions will unlikely coincide with a discrete ordinate direction. Since the number of directions is governed by the order of radiation quadrature, higher quadrature orders are more accurate for interface problems.
Figure 2. Octant of angular quadrature with transmission direction. The calculated transmission direction (ΩT) is shifted to match the nearest quadrature point.


Depending on the refractive indices of the two media and the angle of incidence, θ1, the proportion of radiation intensity that is reflected or transmitted will vary. If n 1 < n 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiabgYda8iaad6gadaWgaaWcbaGaaGOmaaqa baaaaa@3AB7@ , then the radiative intensity in medium one will be partially reflected and partially transmitted into a cone defined by the critical angle, θc, which is given by:

θ c = sin 1 n 1 n 2 when n 1 < n 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaadogaaeqaaOGaeyypa0Jaci4CaiaacMgacaGGUbWaaWba aSqabeaacqGHsislcaaIXaaaaOWaaSaaaeaacaWGUbWaaSbaaSqaai aaigdaaeqaaaGcbaGaamOBamaaBaaaleaacaaIYaaabeaaaaGccaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaabEhacaqGObGaaeyzaiaab6gacaaMc8 UaaGPaVlaaykW7caWGUbWaaSbaaSqaaiaaigdaaeqaaOGaeyipaWJa amOBamaaBaaaleaacaaIYaaabeaaaaa@6E5C@

and defines a cone in 3D (see the images below). The critical angle is defined by a ray that grazes the surface on the side of medium 2 and is transmitted exactly at the critical angle in medium 1. As an example, if n 1 > n 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiabg6da+iaad6gadaWgaaWcbaGaaGOmaaqa baaaaa@3ABB@ and θ 1 > θ c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaOGaeyOpa4JaeqiUde3aaSbaaSqaaiaadoga aeqaaaaa@3C6D@ , the direction of incoming radiation is greater than the critical angle and total internal reflection will occur. This means the incoming ray is reflected at the same angle of incidence and no transmission occurs.
Figure 3. Total internal reflection of intensity rays at an interface ( n 1 > n 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiabg6da+iaad6gadaWgaaWcbaGaaGOmaaqa baaaaa@3ABB@ ). The critical angle cone defines the angle outside which total internal reflection occurs, that is, θ 1 > θ c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaOGaeyOpa4JaeqiUde3aaSbaaSqaaiaadoga aeqaaaaa@3C6D@ .


However, if θ 1 < θ c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaOGaeyipaWJaeqiUde3aaSbaaSqaaiaadoga aeqaaaaa@3C69@ , the outgoing intensity will include transmission from medium 2 to medium 1, as shown in the image below.
Figure 4. Reflection and transmission of intensity rays at an interface ( n 1 > n 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiabg6da+iaad6gadaWgaaWcbaGaaGOmaaqa baaaaa@3ABB@ ) for θ 1 < θ c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaOGaeyipaWJaeqiUde3aaSbaaSqaaiaadoga aeqaaaaa@3C69@


At the interface, the intensity is partially reflected and transmitted into the other medium if θ 1 < θ c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaigdaaeqaaOGaeyipaWJaeqiUde3aaSbaaSqaaiaadoga aeqaaaaa@3C69@ or the outgoing direction is in medium 2. The reflected proportion from Ω I 1 Ω R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aa0 baaSqaaiaadMeaaeaacaaIXaaaaOGaeyOKH4QaeuyQdC1aa0baaSqa aiaadkfaaeaacaaIXaaaaaaa@3E7C@ , or reflectance, is given by

r 12 = 1 2 n 1 cos θ 1 n 2 cos θ 2 n 1 cos θ 1 + n 2 cos θ 2 2 + 1 2 n 2 cos θ 1 n 1 cos θ 2 n 2 cos θ 1 + n 1 cos θ 2 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIXaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaa caaIYaaaamaabmaabaWaaSaaaeaacaWGUbWaaSbaaSqaaiaaigdaae qaaOGaci4yaiaac+gacaGGZbGaeqiUde3aaSbaaSqaaiaaigdaaeqa aOGaeyOeI0IaamOBamaaBaaaleaacaaIYaaabeaakiGacogacaGGVb Gaai4CaiabeI7aXnaaBaaaleaacaaIYaaabeaaaOqaaiaad6gadaWg aaWcbaGaaGymaaqabaGcciGGJbGaai4BaiaacohacqaH4oqCdaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaaikdaaeqa aOGaci4yaiaac+gacaGGZbGaeqiUde3aaSbaaSqaaiaaikdaaeqaaa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaa laaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaad6gada WgaaWcbaGaaGOmaaqabaGcciGGJbGaai4BaiaacohacqaH4oqCdaWg aaWcbaGaaGymaaqabaGccqGHsislcaWGUbWaaSbaaSqaaiaaigdaae qaaOGaci4yaiaac+gacaGGZbGaeqiUde3aaSbaaSqaaiaaikdaaeqa aaGcbaGaamOBamaaBaaaleaacaaIYaaabeaakiGacogacaGGVbGaai 4CaiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiaad6gadaWg aaWcbaGaaGymaaqabaGcciGGJbGaai4BaiaacohacqaH4oqCdaWgaa WcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaI Yaaaaaaa@8132@

and the transmitted proportion from the Ω I 2 Ω R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aa0 baaSqaaiaadMeaaeaacaaIYaaaaOGaeyOKH4QaeuyQdC1aa0baaSqa aiaadkfaaeaacaaIXaaaaaaa@3E7D@ , or transmittance, is given by

τ 21 =1 r 12 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaikdacaaIXaaabeaakiabg2da9iaaigdacqGHsislcaWG YbWaaSbaaSqaaiaaigdacaaIYaaabeaaaaa@3EAE@

In the second medium, for the current scenario where n 2 > n 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiabg6da+iaad6gadaWgaaWcbaGaaGymaaqa baaaaa@3ABB@ , if θ 2 < θ c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaikdaaeqaaOGaeyipaWJaeqiUde3aaSbaaSqaaiaadoga aeqaaaaa@3C6A@ the radiative intensity is, as for medium one, partially reflected and partially transmitted. The reflection coefficient is as described above since r 21 = r 12 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaGaaGymaaqabaGccqGH9aqpcaWGYbWaaSbaaSqaaiaa igdacaaIYaaabeaaaaa@3C38@ . If θ 2 > θ c MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiaaikdaaeqaaOGaeyOpa4JaeqiUde3aaSbaaSqaaiaadoga aeqaaaaa@3C6E@ , then total internal reflection occurs and r 21 = 1.0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaaIYaGaaGymaaqabaGccqGH9aqpcaaIXaGaaiOlaiaaicda aaa@3BC5@ and τ 12 =0.0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaaigdacaaIYaaabeaakiabg2da9iaaicdacaGGUaGaaGim aaaa@3C92@ , meaning no transmission of radiative intensity into the second medium or from the first medium. This is shown in the image above with the gray dashed lines.

From the above, the outgoing radiative intensity on the side one of the interface for the current ordinate direction, Ω R 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aa0 baaSqaaiaadkfaaeaacaaIXaaaaaaa@3941@ is given by

I( Ω R 1 )= r 12 I( Ω I 1 )+ τ 21 n 1 n 2 2 I( Ω I 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaacI cacqqHPoWvdaqhaaWcbaGaamOuaaqaaiaaigdaaaGccaGGPaGaeyyp a0JaamOCamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGjbGaaiikai abfM6axnaaDaaaleaacaWGjbaabaGaaGymaaaakiaacMcacqGHRaWk cqaHepaDdaWgaaWcbaGaaGOmaiaaigdaaeqaaOWaaeWaaeaadaWcaa qaaiaad6gadaWgaaWcbaGaaGymaaqabaaakeaacaWGUbWaaSbaaSqa aiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aakiaadMeacaGGOaGaeuyQdC1aa0baaSqaaiaadMeaaeaacaaIYaaa aOGaaiykaaaa@54B0@

where for medium one, the first term on the right-hand side represents the reflected intensity in medium one and the second term represents the transmitted intensity from medium two to one. For medium two, if the current ordinate direction is Ω R 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aa0 baaSqaaiaadkfaaeaacaaIYaaaaaaa@3942@ then the intensity outgoing radiative intensity is given by

I( Ω R 2 )= r 21 I( Ω I 1 )+ τ 12 n 2 n 1 2 I( Ω I 1 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaacI cacqqHPoWvdaqhaaWcbaGaamOuaaqaaiaaikdaaaGccaGGPaGaeyyp a0JaamOCamaaBaaaleaacaaIYaGaaGymaaqabaGccaWGjbGaaiikai abfM6axnaaDaaaleaacaWGjbaabaGaaGymaaaakiaacMcacqGHRaWk cqaHepaDdaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaeWaaeaadaWcaa qaaiaad6gadaWgaaWcbaGaaGOmaaqabaaakeaacaWGUbWaaSbaaSqa aiaaigdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aakiaadMeacaGGOaGaeuyQdC1aa0baaSqaaiaadMeaaeaacaaIXaaa aOGaaiykaaaa@54B0@

For n 2 < n 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiabgYda8iaad6gadaWgaaWcbaGaaGymaaqa baaaaa@3AB7@ , the subscripts of the above analysis must be exchanged, and total internal reflection will now occur in medium one.

Reflection and transmission for diffuse interfaces

If the interface is diffused, for example, diffused_fraction = 1.0, the reflectivity of the interface is given by the hemispherically averaged reflectance:

r D,12 = 1 2 + (n1)(3n+1) 6 (n+1) 2 2 n 3 ( n 2 +2n+1) ( n 4 1) 2 ( n 2 +1) + 8 n 4 ( n 4 +1) ( n 4 1) 2 ( n 2 +1) lnn+ n 2 ( n 2 1) 2 ( n 2 +1) 3 ln n1 n+1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGebGaaiilaiaaigdacaaIYaaabeaakiabg2da9maalaaa baGaaGymaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaGGOaGaamOBai abgkHiTiaaigdacaGGPaGaaiikaiaaiodacaWGUbGaey4kaSIaaGym aiaacMcaaeaacaaI2aGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykam aaCaaaleqabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiaaikdacaWG UbWaaWbaaSqabeaacaaIZaaaaOGaaiikaiaad6gadaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaGaamOBaiabgUcaRiaaigdacaGGPaaa baGaaiikaiaad6gadaahaaWcbeqaaiaaisdaaaGccqGHsislcaaIXa GaaiykamaaCaaaleqabaGaaGOmaaaakiaacIcacaWGUbWaaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGymaiaacMcaaaGaey4kaSYaaSaaae aacaaI4aGaamOBamaaCaaaleqabaGaaGinaaaakiaacIcacaWGUbWa aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGymaiaacMcaaeaacaGGOa GaamOBamaaCaaaleqabaGaaGinaaaakiabgkHiTiaaigdacaGGPaWa aWbaaSqabeaacaaIYaaaaOGaaiikaiaad6gadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaIXaGaaiykaaaaciGGSbGaaiOBaiaad6gacqGH RaWkdaWcaaqaaiaad6gadaahaaWcbeqaaiaaikdaaaGccaGGOaGaam OBamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaigdacaGGPaWaaWba aSqabeaacaaIYaaaaaGcbaGaaiikaiaad6gadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaaIXaGaaiykamaaCaaaleqabaGaaG4maaaaaaGc ciGGSbGaaiOBamaabmaabaWaaSaaaeaacaWGUbGaeyOeI0IaaGymaa qaaiaad6gacqGHRaWkcaaIXaaaaaGaayjkaiaawMcaaaaa@8EBE@

where n= n 1 / n 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2 da9maalyaabaGaamOBamaaBaaaleaacaaIXaaabeaaaOqaaiaad6ga daWgaaWcbaGaaGOmaaqabaaaaaaa@3BC2@ is the ratio of refractive indices.
Note: n 1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaaaaa@37CE@ always represents the medium with higher refractive index and n 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaaaaa@37CF@ the medium of lower refractive index.

The transmission from medium one to two is given by

τ D,12 =1 r D,12 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadseacaGGSaGaaGymaiaaikdaaeqaaOGaeyypa0JaaGym aiabgkHiTiaadkhadaWgaaWcbaGaamiraiaacYcacaaIXaGaaGOmaa qabaaaaa@41A0@

For the reverse direction the reflectance and transmittance are given by:

τ D,21 =1 1 n 2 (1 r D,12 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadseacaGGSaGaaGOmaiaaigdaaeqaaOGaeyypa0JaaGym aiabgkHiTmaalaaabaGaaGymaaqaaiaad6gadaahaaWcbeqaaiaaik daaaaaaOGaaiikaiaaigdacqGHsislcaWGYbWaaSbaaSqaaiaadsea caGGSaGaaGymaiaaikdaaeqaaOGaaiykaaaa@475C@

and

τ D,21 = 1 n 2 τ D,12 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdq3aaS baaSqaaiaadseacaGGSaGaaGOmaiaaigdaaeqaaOGaeyypa0ZaaSaa aeaacaaIXaaabaGaamOBamaaCaaaleqabaGaaGOmaaaaaaGccqaHep aDdaWgaaWcbaGaamiraiaacYcacaaIXaGaaGOmaaqabaaaaa@4377@

respectively.

The incoming radiative intensity to the interface is given by the hemispherically averaged intensity for medium one and two:

Q 1 = j = 1 N w j I j n Ω j ( n Ω j ) when n Ω j > 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIXaaabeaakiabg2da9maaqahabaGaam4DamaaBaaaleaa caWGQbaabeaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaad6eaa0Gaey yeIuoakiaadMeadaWgaaWcbaGaamOAaaqabaGcdaabdaqaaiaad6ga cqGHflY1cqqHPoWvdaWgaaWcbaGaamOAaaqabaaakiaawEa7caGLiW oacaGGOaGaamOBaiabgwSixlabfM6axnaaBaaaleaacaWGQbaabeaa kiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaae4DaiaabIgacaqGLbGaaeOBaiaaykW7caaMc8UaamOBai abgwSixlabfM6axnaaBaaaleaacaWGQbaabeaakiabg6da+iaaicda aaa@7A20@
Q 2 = j=1 N w j I j n Ω j (n Ω j )whenn Ω j 0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuamaaBa aaleaacaaIYaaabeaakiabg2da9maaqahabaGaam4DamaaBaaaleaa caWGQbaabeaaaeaacaWGQbGaeyypa0JaaGymaaqaaiaad6eaa0Gaey yeIuoakiaadMeadaWgaaWcbaGaamOAaaqabaGcdaabdaqaaiaad6ga cqGHflY1cqqHPoWvdaWgaaWcbaGaamOAaaqabaaakiaawEa7caGLiW oacaGGOaGaamOBaiabgwSixlabfM6axnaaBaaaleaacaWGQbaabeaa kiaacMcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8Uaae4DaiaabIgacaqGLbGaaeOBaiaaykW7caaMc8UaamOBai abgwSixlabfM6axnaaBaaaleaacaWGQbaabeaakiabgsMiJkaaicda aaa@7ACE@

where n MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E7@ is the outward facing normal. From these fluxes, the outgoing radiative intensity at the wall for the current ordinate direction, Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3782@ , is given by

I(Ω)= r D,12 Q 1 π + τ D,21 Q 2 π MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaacI cacqqHPoWvcaGGPaGaeyypa0JaamOCamaaBaaaleaacaWGebGaaiil aiaaigdacaaIYaaabeaakmaalaaabaGaamyuamaaBaaaleaacaaIXa aabeaaaOqaaiabec8aWbaacqGHRaWkcqaHepaDdaWgaaWcbaGaamir aiaacYcacaaIYaGaaGymaaqabaGcdaWcaaqaaiaadgfadaWgaaWcba GaaGOmaaqabaaakeaacqaHapaCaaaaaa@4BC2@

Reflection and Transmission for partially specular and partially diffuse interfaces

For partially specular and partially diffuse interfaces 0.0 < diffused fraction < 1.0.

Interfaces between semi-transparent media are typically not 100 percent diffused or specular and the diffuse fraction lies somewhere between zero and one. In this range the outgoing radiative intensity is treated as a linear combination of the specular and diffuse components, for example:

I(Ω)= 1α I S (Ω)+α I D (Ω) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaacI cacqqHPoWvcaGGPaGaeyypa0ZaaeWaaeaacaaIXaGaeyOeI0IaeqyS degacaGLOaGaayzkaaGaamysamaaCaaaleqabaGaam4uaaaakiaacI cacqqHPoWvcaGGPaGaey4kaSIaeqySdeMaamysamaaCaaaleqabaGa amiraaaakiaacIcacqqHPoWvcaGGPaaaaa@4B79@

where α MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@3793@ is the diffuse fraction, I S ( Ω ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaCa aaleqabaGaam4uaaaakiaacIcacqqHPoWvcaGGPaaaaa@3AB8@ is the outgoing specular component of radiative intensity, and I D ( Ω ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaCa aaleqabaGaamiraaaakiaacIcacqqHPoWvcaGGPaaaaa@3AA9@ is the outgoing diffuse component of radiative intensity. For example, in medium one in the image above the components would be:

I S ( Ω ) = I ( Ω R 1 ) = r 12 I ( Ω I 1 ) + τ 21 n 1 n 2 2 I ( Ω I 2 ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaCa aaleqabaGaam4uaaaakiaacIcacqqHPoWvcaGGPaGaeyypa0Jaamys aiaacIcacqqHPoWvdaqhaaWcbaGaamOuaaqaaiaaigdaaaGccaGGPa Gaeyypa0JaamOCamaaBaaaleaacaaIXaGaaGOmaaqabaGccaWGjbGa aiikaiabfM6axnaaDaaaleaacaWGjbaabaGaaGymaaaakiaacMcacq GHRaWkcqaHepaDdaWgaaWcbaGaaGOmaiaaigdaaeqaaOWaaeWaaeaa daWcaaqaaiaad6gadaWgaaWcbaGaaGymaaqabaaakeaacaWGUbWaaS baaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaakiaadMeacaGGOaGaeuyQdC1aa0baaSqaaiaadMeaaeaaca aIYaaaaOGaaiykaaaa@5A7A@

and

I D (Ω)= r D,12 Q 1 π + τ D,21 Q 2 π MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaCa aaleqabaGaamiraaaakiaacIcacqqHPoWvcaGGPaGaeyypa0JaamOC amaaBaaaleaacaWGebGaaiilaiaaigdacaaIYaaabeaakmaalaaaba GaamyuamaaBaaaleaacaaIXaaabeaaaOqaaiabec8aWbaacqGHRaWk cqaHepaDdaWgaaWcbaGaamiraiaacYcacaaIYaGaaGymaaqabaGcda WcaaqaaiaadgfadaWgaaWcbaGaaGOmaaqabaaakeaacqaHapaCaaaa aa@4CC2@

Specular and diffuse interfaces

For the interface equations to be applied weakly, Iw must be applied in both mediums. If the current ordinate direction, Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3782@ , is outgoing from the interface in medium 1 then Iw is equal to the proportion of radiative intensity reflected and transmitted. From the analysis in the previous section, this would be:

I w = r 12 I Ω I 1 + τ 21 n 1 n 2 2 I Ω I 2 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaWG3baabeaakiabg2da9iaadkhadaWgaaWcbaGaaGymaiaa ikdaaeqaaOGaamysamaabmaabaGaeuyQdC1aa0baaSqaaiaadMeaae aacaaIXaaaaaGccaGLOaGaayzkaaGaey4kaSIaeqiXdq3aaSbaaSqa aiaaikdacaaIXaaabeaakmaabmaabaWaaSaaaeaacaWGUbWaaSbaaS qaaiaaigdaaeqaaaGcbaGaamOBamaaBaaaleaacaaIYaaabeaaaaaa kiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGjbWaaeWaae aacqqHPoWvdaqhaaWcbaGaamysaaqaaiaaikdaaaaakiaawIcacaGL Paaaaaa@5192@

In medium 2 since the current ordinate direction, Ω MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3782@ , is incoming to the surface no boundary flux is added to the equation, that is, η ( I w ,v) Γ =0 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaai ikaiaadMeadaWgaaWcbaGaam4DaaqabaGccaGGSaGaamODaiaacMca daWgaaWcbaGaeu4KdCeabeaakiabg2da9iaaicdaaaa@4002@ .

Reflection and Transmission for diffuse interfaces of Type External

Exchange of radiative intensity occurs for external surfaces when the medium inside the computational domain is semitransparent. That is the medium surrounding, which is not modeled using a computational mesh, participates in radiative transfer. For this case a mathematical model of external radiation is used. The model assumes that the surrounding medium has uniform radiative intensity in all directions, that is, the radiative flux is isotropic. The isotropic radiative intensity is given by the following blackbody source:

I ext = ε ext σ T ext 4 π MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaqGLbGaaeiEaiaabshaaeqaaOGaeyypa0ZaaSaaaeaacqaH 1oqzdaWgaaWcbaGaaeyzaiaabIhacaqG0baabeaakiabeo8aZjaads fadaqhaaWcbaGaaeyzaiaabIhacaqG0baabaGaaGinaaaaaOqaaiab ec8aWbaaaaa@47C7@

where ε ext MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaabwgacaqG4bGaaeiDaaqabaaaaa@3AA1@ is the external emissivity and is set to one, σ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37B7@ is the Stefan-Boltzmann constant, T ext MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaqGLbGaaeiEaiaabshaaeqaaaaa@39D3@ is the temperature of the surrounding medium. At the external interface I ext MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysamaaBa aaleaacaqGLbGaaeiEaiaabshaaeqaaaaa@39C8@ is transferred into the medium. This condition can only be applied to boundaries as the interface is only modeled mathematically.